• Title/Summary/Keyword: 희석된 메탄

Search Result 35, Processing Time 0.022 seconds

Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame (저신장율 대향류확산화염에서 에지화염 진동불안정성)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Song-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.295-298
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation. Edge flame oscillations in low strain rate flames are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

Elucidation and Analysis of Desmethylsibutramine in Food (식품 중 데스메틸시부트라민의 규명 및 분석)

  • Kwon, Chan-Hyeok;Yoon, Tae-Hyung;Oh, Jae-Ho;Lee, Kwang-Ho;Choi, Dong-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • It has been elucidated desmethylsibutramine in food, that is an analogue of sibutramine used for anti-obesity drug. After separating and purifying in food samples, it was analyzed and identified by the instrument such as HPLC/PDA, HPLC/MS, HPLC/MS/MS and NMR. To analyze sibutamine and desmathylsibutramine in foods, they were analyzed and identified by HPLC/PDA after extracting in dichloromethane, filtering, concentration and diluting in methanol. The overall recoveries were ranged from 87% to 91% and the limit of quantitation was $2.5\;{\mu}g/kg$. As results, sibutramine and desmethylsibutramine was not detected in all the selected 54 food samples.

Effects of Mn- and K-addition on Catalytic Activity of Calcium Oxide for Methane Activation (메탄 활성화반응에서 산화칼슘 촉매의 활성에 대한 망간과 칼륨의 첨가효과)

  • Park, Jong Sik;Kong, Jang Il;Jun, Jong Ho;Lee, Sung Han
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.618-628
    • /
    • 1998
  • Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800$^{\circ}C$ to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction(XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally $p(CH_4)/p(O_2)=250$ Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best $C_2$ yield of 8.0% with a selectivity of 43.2% at 775$^{\circ}C$. The $C_2$ selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO([Mn] > 6.3 mol%) catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the $C_2$ selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000$^{\circ}C$ at Po2's of $10^{-3}\; to\;10^{-1}\;atm.$ The electrical conductivity was decreased with Mn-doping and increased with increasing $P0_2$in the range of $10^{-3}\;to\;10^{-1}\;atm,$ indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry.

  • PDF

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF