• 제목/요약/키워드: 희박연소한계

검색결과 58건 처리시간 0.018초

전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성 (Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position)

  • 김태훈;김민석;김혜민
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구 (A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine)

  • 임기훈;박철웅;이성원;최영;김창기;이장희
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2013
  • 자동차 배기가스 규제가 강화됨에 따라 천연가스에 수소를 첨가하는 수소-천연가스 혼합연료(HCNG)를 기존의 압축천연가스(CNG) 엔진에 적용하려는 많은 연구들이 진행되고 있다. 그러나 수소의 높은 연소 속도로 인한 역화, 조기착화, 노킹(knocking) 등의 이상연소 발생 가능성은 엔진의 가열 또는 열효율 및 출력의 저하를 야기하는 문제점이 발생할 수 있다. 본 연구에서는 CNG 연료에 수소를 일정 부분 혼합한 HCNG 연료를 기존의 CNG 엔진에 적용하여 희박연소 한계 확장을 통해 연소 성능 개선을 확인하고, CNG와 HCNG 연료의 노킹 특성을 파악하고자 하였다. 공기과잉율의 변화에 따른 노킹 발생 조건을 관찰함으로써 HCNG 연료의 적용성 및 노킹마진을 평가하고자 하였다. HCNG 연료 사용 시 최적운전조건에서 노킹 문제없이 엔진을 운전할 수 있었으나 노킹이 일어날 수 있는 가능성이 높아져 이에 대한 대비가 필요할 것으로 판단된다.

스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교 (Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking)

  • 강민균;엄인용
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교 (Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method)

  • 강민균;엄인용
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

재순환역을 수반하는 동축분류예혼합화염에 관한 연구 (Stability of premixed double concentric jets flame with a recirculation zone)

  • 이등헌일;송규근
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.145-153
    • /
    • 1987
  • 본 논문에서는 예혼합동축분류화염에 있어서 재순환역 안으로의 기체(공기, 연료, 혼합기) 주입과 2차공기의 족회가 화염안정성, 화염형상 및 재순환역에 미치는 영향을 명확히 하였다.

세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성 (Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner)

  • 정종수;이교우
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

유동분위기에서 메탄올의 연소특성에 관한 연구 (A Study on the Combustion Characteristic of the Methanol Fuel in a Turbulence Mixture)

  • 이중순;이태원;정성식;하종률
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2022-2029
    • /
    • 1995
  • The experiment was performed by using the condenser discharge ignition device in a constant volume combustion chamber for high pressure, equivalent to the TDC of spark ignition engine, which makes the forced turbulent field possible. The conclusions obtained under various initial pressures, initial temperatures, and turbulent conditions of the methanol-air mixture are as follows : As initial pressure, initial temperature of the mixture, and the ignition energy increase, the inflammability limit expands, but the lean inflammability limit decreases as turbulence intensity increases. Combustion duration is shorter in the case of the lower initial pressure, the higher initial temperature, an equivalence ratio of 1.1-1.2, and even though turbulence intensity increases up to optimum value. Maximum combustion pressure increases in turbulent ambience under the same mixture condition, only in the case each optimum turbulence intensity exists under every condition. As the turbulence intensity increases .tau.$_{10}$ proportion increases while the .tau.$_{pr}$ proportion decreases....

정상초음파의 영향을 받는 메탄-공기 예혼합화염의 주파수-당량비 상관도 분석(I) (Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (I))

  • 김민성;김정수;구자예;권오채
    • 한국추진공학회지
    • /
    • 제19권4호
    • /
    • pp.37-44
    • /
    • 2015
  • 정상초음파의 영향을 받는 메탄-공기 예혼합화염의 주파수-당량비 상관도 분석을 위한 실험적 연구가 수행되었다. 고속카메라를 이용하여 예혼합화염의 전파영상을 획득하였으며, 영상 후처리를 통해 화염전파속도와 함께 화염의 전파거동을 면밀히 관찰하였다. 이론당량비 이하의 연료희박 당량비 구간에서 정상초음파가 개재할 때, 연소반응 촉진으로 인해 화염전파속도는 증가하였으나 화학반응강도가 포화상태에 이르는 당량비에서는 그 속도가 감소하였다.