• Title/Summary/Keyword: 흡착 현상

Search Result 425, Processing Time 0.029 seconds

Nitrogen adsorption on the stepped planes of tungsten: II. W(210) and W(310) plane (계단형 텅스텐 결정면의 질소 흡착에 관한 연구: II. W(210) 및 W(310)면)

  • 최대선;한종훈;백선목;박노길;김용욱;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.301-308
    • /
    • 1996
  • The heat of desorption and the work function change induced by nitrogen adsorption on the slepped tungstein surface plants, W(210) and W(310), are measured using the Field Electron Emission Microscope(FEM). The adsoption sites are predicted from the Thermal Desortion Spectra(TDS). The wirk function change of both W(210) and W(310) planes increase as increasing the nitrogen dose and saturates at the nitrogen dose about 5 Langmuir to 0.29 eV and 0.20 eV respectively. We find three adsorption site on each plane for the low dose range. The TDS result shows that the intensity of $\alpha_1$ state on W(310) is much stronger than that of $\alpha_1$ state on W(210), and the direction of nitrogen dipole moment adsorbed on the sites correspond to $\alpha_1$ and $\beta_2$ state on W(210) and W(310) planes are in the opposite direction to that of the equivalent states on W(100) plane. From this observation we can predict the relative atomic position in the z-direction (perpendicular direction to the surface) of nitrogen molecules/atoms adsorbed on these sites.

  • PDF

Competitive Displacement of Methylcellulose from Oil-Water Interface by Various Emulsifiers (저분자량 유화제 첨가에 의한 계면 흡착 메칠셀룰로오스의 경쟁이탈 특성 연구)

  • Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1271-1277
    • /
    • 2008
  • Competitive displacement of methylcellulose (MC) absorbed at the oil-water interface was investigated by interfacial composition, surface shear viscosity, or surface tension measurements. It was found that all emulsifiers could competitively displace the interfacial MC from the oil-water interface but their behaviors were different from each other. With Tween 20 added to MC emulsion (1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris, pH 7), MC load was steadily decreased with increasing concentrations of the emulsifier, as confirmed by surface shear viscosity measurements; moreover, there was complete MC displacement from the emulsion droplet surface at high concentration (0.1 wt%). The oil-soluble Span 80 was found to show a synergism with MC at the interface, which resulted in higher MC load at relatively low emulsifier concentrations ($\leq$0.05 wt%). At a higher emulsifier concentration (0.1 wt%) limited MC displacement was observed. These results were well supported by surface shear viscosity measurements. With water-soluble SDS, MC load was decreased with increasing concentrations of the emulsifier. Unlike Tween 20, however, it was found that at high concentrations (> 0.1 wt%), there was still some MC remaining at the droplet surface. Surface tension measurements are suggestive of an interfacial complex between MC and SDS.

Understanding of Protein Adsorption Kinetics to Contact Lens Hydrogels (콘택트렌즈용 하이드로젤로의 단백질 흡착 반응속도 이해)

  • Kim, Hyun-Jae;Kim, Mira;Noh, Hyeran
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.220-224
    • /
    • 2014
  • Protein adsorption kinetics was studied with the amount of proteins adsorbed to contact lens hydrogels over time scales. Hydroxyethylmethacrylate (HEMA) and silicone hydrogels were dipped in protein solutions (albumin or IgG) and adsorption amounts were measured over time scales. The amount of protein adsorbed to both hydrogel types increased rapidly in 10 min, and remained consistently in 90 min. Decreasing interfacial energetics was taken slowly up to an hour in spite of rapid diffusion of protein molecules. This is due to the fact that water deprivation from three dimensional interphase initially formed by protein diffusion took over an hour. Interpretation of adsorption kinetics on contact lens hydrogels was discussed with understanding of relationship between surface energy and protein adsorption capacity.

Adsorption of Pentachlorophenol (PCP) on Clay Minerals from Hexane Solution (Hexane 용액중(溶液中)에서 점토용물(粘土鏞物)에 의(依)한 PCP 흡착(吸着))

  • Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.141-145
    • /
    • 1974
  • Adsorption experiments were carried out with several clay minerals and PCP hexane solution in order to clarify the status of adsorbed PCP on the clay surface. The amount of PCP adsorption on clay minerals was much greater in the clay-hexane system than in the clay water system. Among the clay minerals, allophane and imogolite ($SiO_2/Al_2O_3$ ratio of about 1) were the most efficient adsorbents of PCP. The PCP adsorption from hexane solution was greatly hindered by the presence of water, suggesting the occurrence of adsorption by a dipole-dipole interaction. PCP adsorption is dependent upon the nature of the clay surface and the exchangeable cations rather than the total surface area.

  • PDF

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Adsorption Characteristics of Pb(II) by Manganese Oxide Coated Activated Carbon in Fixed Bed Column Study (망간산화물이 코팅된 활성탄의 납 흡착특성에 관한 칼럼 실험)

  • Lee, Myoungeun;Lee, Chaeyoung;Chung, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.39-44
    • /
    • 2014
  • Effects of operating parameters on the breakthrough properties of Pb(II) by $Mn_3O_4$ coated activated carbon prepared by supercritical technique were investigated through fixed-bed column experiments. The mass transfer zone and equilibrium adsorption capacity were enhanced about 2.8 times for Pb(II) by $Mn_3O_4$ coating onto activated carbon. Increase of bed height enhanced the residence time of Pb(II) in adsorption zone, giving the higher breakthrough time, mass transfer zone and equilibrium adsorption capacity. Increase of flow rate reduced the residence time and diffusion of Pb(II) in adsorption zone, therefore decreased the equilibrium adsorption capacity. The higher inlet concentration of Pb(II) decreased the breakthrough time and mass transfer zone through the promotion of Pb(II) transfer onto adsorbent.

A Study of Adsorption Behaviour of Humic Acid and Americium on the Kaolinite (카올리나이트에 대한 휴믹산 및 아메리슘 흡착거동 연구)

  • Lee, Myung-Ho;Lee, Kyu-Whan;Park, Kyung-Kyun;Jung, Euo-Chang;Song, Kyu-Seok;Shin, Hyun-Sang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this study, the adsorption reactions in the binary component system such as kaolinite-humic acid, kaolinite-americium and humic acid-americium were investigated. After performing the basic physico-chemical properties of the kaolinite, the adsorption reactions of the humic acid on the kaolinite were carried out with varying concentration of humic acid and ion strength, and pH. With increasing HA concentration and pH, the sorption of HA onto KA decreased, while the sorption of HA onto KA increased with increasing ionic stre ngth. Also, with varying pH, the adsorption reactions of the americium-kaolinite and americium-humic acid were studied. In the acid and neutral region, Am easily adsorbed on the HA, while the sorption of Am on the HA in the alkali region decreased because of electrostatic repulsion. The results from these studies make it possible to understand the characteristics of adsorption behaviour of the americium by the humic acid in the water environment.

Pretreatment of Livestock Wastewater containing PO4-3-P with Waste Oyster Shells (폐굴껍질을 이용한 축산폐수중 무기인의 1차 처리)

  • Kim, Eun-Ho;Kim, Seok-Tack;Jang, Sung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 1999
  • In this study, various batch tests were performed to examine the utilization of waste oyster shells for removal of $PO_4^{3-}-P$ in livestock wastewater, because waste oyster shells have been known to be very porous and to have alkaline minerals such as calcium and mangnesium. $PO_4^{3-}-P$ removal rate were increased by waste oyster shells, as specific surface area and contact efficiency per unit area of their were increased. Generally, it could be showed that $PO_4^{3-}-P$ removal rate were very influenced by particle size, dosage and temperature. At low pH of initial reactions, it would be showed that $PO_4^{3-}-P$ removals were directly influenced by adsorption but crystallization process were dominated with passed time and pH increasing. The SEM observed that the variations were hardly seen, but particle sizes of waste oyster shell were relatively big after reactions and showed forms of smaller plate than before reactions.

  • PDF

The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface (유체 계면에서 콜로이드 흡착에 대한 전해질 농도의 영향)

  • Park, Bum Jun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.527-530
    • /
    • 2013
  • I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.