• Title/Summary/Keyword: 흡착 키네틱

Search Result 5, Processing Time 0.031 seconds

Adsorption Behavior of Pb2+ Ions on Alginate Beads and Capsules (알지네이트 비드와 캡슐에서의 납 이온의 흡착거동)

  • Shin, Eun Woo;Thuong, Nguyen Thi Lien;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.166-171
    • /
    • 2007
  • The adsorption behavior of $Pb^{2+}$ was compared between calcium alginate beads and capsules, which have different structures of alginate-gel core beads and liquid core alginate-membrane capsules, respectively. In terms of adsorption kinetics and isotherms, adsorption characteristics depending on pH and hardening time were compared for both adsorbents and also released calcium ion during the adsorption process was monitored. The adsorption of $Pb^{2+}$ on both adsorbents was caused by surface complexation and ion exchange mechanisms, both of which have similar effects on adsorption process regardless of the amount of adsorbed $Pb^{2+}$. The dependence of $Pb^{2+}$ adsorption upon pH was also similar for both adsorbents indicating the existence of similar functional groups on the surface of adsorbents. However, a different $Pb^{2+}$ adsorption behavior was observed considering the adsorption kinetics. The adsorption kinetic of $Pb^{2+}$ on alginate beads was slower than on alginate capsules and the maximum adsorption loading ($Q_{max}$) onto alginate beads was also less than onto alginate capsules by 49%. This drawback of alginate beads compared to capsules were ascribed to a diffusion limitation due to solid gel-core structure of alginate beads.

Sorption Behavior of Acetic Acid onto Activated Carbons (활성탄에서의 아세트산 흡탈착 거동)

  • Lee, Chae-Young;Chung, Jin-Suk;Shin, Eun-Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1130-1134
    • /
    • 2008
  • Acetic acid has been used as a solvent in the process of manufacturing terephthalic acid. Although the used acetic acid has been mainly separated and recovered through the distillation process, adsorption process can be applied to recover a small amount of acetic acid remaining in the stream after the distillation process. In this study, activated carbon was selected as an adsorbent for acetic acid and the effects of temperature and acid treatment on adsorption capacity were investigated. The adsorption capacities of activated carbon for acetic acid were 0.176 mmol/g at 303 K and 0.118 mmol/g at 343 K, respectively. Adsorption capacity decreased with increasing temperature. The acid treatment of the activated carbon induced the increase in adsorption capacity, which was ascribed to increase in surface functional groups such as phenolic hydroxyl groups and carboxilic acid groups on the carbon surface. In the results of acetic acid desorption, 89% of adsorbed acetic acid was desorbed from activated carbon.

Removal of Pb2+ Ions from Water by Surfactant-templated Mesoporous Silicates (계면활성제가 담지된 메조포러스 실리케이트에 의한 수중 납이온 제거)

  • Choi, Hyun Suk;Lee, Dong Gue;Cho, Guk Jin;Lee, Chae Young;Chung, Jin Suk;Yoo, Ik-keun;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.172-178
    • /
    • 2006
  • Mesoporous silicate materials have been used as adsorbents for the removal of heavy metals from water by introducing functional groups such as thiol and amine. In this research, it was investigated whether surfactants used as templating agents in synthetic processes can act as adsorption sites for heavy metals. Three mesoporous silicates-SBA-15, MCM-41, and HMS were synthesized using, respectively, block copolymer, hexadecyltrimethylammoniumbromide (HDTMA), and dodecyamine as surfactants. X-ray diffraction and $N_2$ gas adsorption analysis confirmed that the mesoporous silicates were well prepared and FT-IR spectra resulted in the existence of the surfactants in as-synthesized mesoporous silicates and the removal of surfactants after calcination. The interactions between $Pb^{2+}$ ions and the mesoporous silicate materials with/without surfactants were observed. In adsorption kinetic experiments, it revealed that the calcined mesoporous silicates and the surfactant-loaded SBA-15 almost had no adsorption capacity for $Pb^{2+}$ ions. In contrast, the surfactant-loaded MCM-41 and HMS showed, respectively, the adsorption capacities of 26.60 and 115.16 mg/g which were acquired through the fits of adsorption kinetic data to the pseudo second order kinetic model. The adsorption capacities were comparable to those of other mesoporous adsorbents for heavy metals.

Investigation on Effects of Aging on the Formation and Physicochemical Properties of Hydrothermally Synthesized Magnesium Aluminum-Layered Double Hydroxide/Rice Husk Hydrochar Nanocomposites for Effective Remediation of Arsenic-Contaminated Soil (비소 오염토양의 효과적 정화를 위한 열수합성 마그네슘알루미늄-이중층수산화물/왕겨 하이드로차 나노복합체의 형성 및 이화학적 특성에 미치는 에이징 효과 규명)

  • Seon Yong Lee;Chul-Min Chon;Gil-Jae Yim;So-Jeong Kim;Sue A Kang;Young Jae Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.577-592
    • /
    • 2024
  • This study presents the synthesis and characterization of MgAl-layered double hydroxide (LDH)/rice husk hydrochar (RHH) nanocomposites (MgAl-LDH/RHHs) via an in situ one-pot hydrothermal route at 150 ℃, utilizing Mg:Al molar ratio of 2:1 for arsenic remediation. The formation of MgAl-LDH/RHHs and their physicochemical properties were evaluated under varying hydrothermal aging times systematically. Prolonging the aging period to 12 hrs significantly enhanced the crystallinity and crystal size of the LDHs, resulting in a 3D hierarchical structure with the highest specific surface area (27.98 m2/g) formed on the hydrochar surface. The hexagonal crystal structure (d003 = 0.8246 nm) was characterized by a rhombohedral unit cell with lattice parameters a = 0.3049 nm and c = 2.4738 nm, and a high positive charge density of 4.284 e/nm2. These properties were found to be favorable for the sorption of arsenic oxyanions. Batch adsorption experiments were conducted to assess the potential of MgAl-LDH/RHHs-12h for the remediation of arsenic-contaminated soils. The original soil sample (CY) was mechanically sieved into fine-grained (CYF, < 75 ㎛) and coarse-grained (CYC, 75 ㎛-2 mm) fractions. When these soil samples were reacted with deionized water, arsenate was identified as the dissolved arsenic species, with concentrations of 2.85 mg/L for CY, 4.02 mg/L for CYF, and 2.55 mg/L for CYC, respectively. Kinetic sorption experiments, conducted at pH 5.0 and 8.0 in the presence and absence of 0.1 M NaCl as a background electrolyte, revealed that arsenic sorption onto MgAl-LDH/RHHs-12h was inhibited at pH 8 in the presence of NaCl. These findings suggest that effective arsenic sorption requires low pH conditions with minimal background electrolytes in soils.

Effects of the Surfactant and the Quaternary Ammonium Functional Groups on the Removal of Perrhenate Anions using Mesoporous Anion-Exchange Resins in Aqueous Solutions (암모늄 기능기와 계면활성제가 포함된 메조포러스 음이온교환수지를 이용한 수용액중 퍼리네이트(Perrhenate) 음이온 제거)

  • Lee, Byunghwan;Chung, Yeon-Sung;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.436-442
    • /
    • 2008
  • Organic-inorganic hybrid mesoporous anion-exchange resins were prepared for the adsorption of anions from aqueous solutions. The prepared samples were characterized using nitrogen adsorption-desorption measurements, Fourier transform infrared (FTIR) spectroscopy, and elemental analyses. Batch and kinetic experiments were performed to examine the anion-exchange performances of the prepared samples. Among the prepared samples, the hybrid mesoporous anion-exchange resins functionalized with tributylammonium groups showed higher adsorption capacities for perrhenate ions than did the resin functionalized with trimethylammonium groups. The surfactant, hexadecylamine, which had hydrophobic alkyl chains, also showed affinity for hydrophobic perrhenate anions.