• 제목/요약/키워드: 흡착율

검색결과 867건 처리시간 0.026초

Gas-Liquid Chromatographic Determination of Haloxyfop-R and lts Methyl Ester Residues in Soils and Soybeans (토양과 대두중 Haloxyfop-R 및 Haloxyfop-R-methyl의 기체크로마토그래피를 이용한 잔류분석)

  • Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • 제16권4호
    • /
    • pp.333-340
    • /
    • 1997
  • An analytical method was developed to determine residues of haloxyfop-R and its methyl ester in soils and soybeans using gas-liquid chromatography (GLC) with electron capture detector (ECD). Soil or soybean sample was acidified and extracted with acetone. The extract was then subjected to ion-associated partition to individually separate haloxyfop-R and the neutral methyl ester. One phase containing haloxyfop-R was methylated with $BF_3$/methanol, partitioned to n-hexane and analyzed by GLC/ECD. The other phase containing the methyl ester was further purified by Florisil column chromatography prior to GLC determination. No cross contamination was found between two phases containing each of the acid and methyl ester, thus two compounds can be separately determined as the identical haloxyfop-R-methyl. Overall recoveries of haloxyfop-R from fortified samples averaged 88.2${\pm}$3.9% (n=12) and 88.3${\pm}$4.0% (n=6) for soils and soybeans respectively, and those of haloxyfop-R-methyl showed mean values of 89.2${\pm}$4.0% (n=12) and 85.6${\pm}$5.6% (n=6). Detection limits of both haloxyfop-R and its methyl esterwere 0.005㎎/㎏ and 0.01㎎/㎏ for soil and soybean samples respectively.

  • PDF

Removal of Cobalt Ions by Precipitate Foam Flotation (침전 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • 제7권3호
    • /
    • pp.11-16
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was t$\xi$sted by precipitate flotation using a sodium lauryl sulfate as a c collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign i ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% $H_2O_2$, prior to precipitate f flotation made shin of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of c cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial coball ion concentration 50 ppm, pH 9.5 gas flow rate 70 mllmin, flotation time 30 min. The simulate ion was fanned t to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested The presence of 0.1 M of $SO_4^{2-}$ ion decreased remo,때 $\xi$폐iciency of cobalt to 90% while the cobalt were almost entirely removed in the a absence of sulfate ion.

  • PDF

Characteristics of Recycled Wafer for Solar Cell According to DRE Process (DRE 공정이 태양전지용 재생웨이퍼 특성에 미치는 영향)

  • Jung, D.G.;Kong, D.Y.;Yun, S.H.;Seo, C.T.;Lee, Y.H.;Cho, C.S.;Kim, B.H.;Bae, Y.H.;Lee, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • 제20권3호
    • /
    • pp.217-224
    • /
    • 2011
  • of materials and simplification of process. Micro-blasting is one of the promising method for recycling of waste wafer due to their simple and low cost process. Therefore, in this paper, we make recycling wafer through the micro-blaster. A surface etched by micro-blaster forms particles, cracks and pyramid structure. A pyramid structure formed by micro-blaster has a advantage of reflectivity decrease. However, lifetime of minority carrier is decreased by particles and cracks. In order to solve this problems, we carried out the DRE(Damage Romove Etching). There are two ways to DRE process ; wet etching, dry etching. After the DRE process, we measured reflectivity and lifetime of minority carrier. Through these results, we confirmed that a wafer recycled can be used in solar cell.

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • 제16권6호
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening (활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향)

  • Kim, Min Sik;Kim, Jin Woo;Kang, Chang Du;So, Byung Dal;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • 제32권3호
    • /
    • pp.201-211
    • /
    • 2019
  • The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

The test-bed construction and water purification assessment of the eco-convergence type aerated string contacted oxidation system (생태융합형 접촉산화수로 Test-Bed 구축 및 정화효율 평가)

  • Choi, Sunhwa;Lee, Seung-Heon;Jang, Kyusang;Kim, Heungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.592-592
    • /
    • 2016
  • 국내에는 17,500여개의 농업용 저수지가 전국적으로 분포하고 있다. 국내 농업용 저수지는 대부분이 소규모이며, 연중 수량 변동이 심하고, 유역배율이 작아 태생적으로 수질오염에 취약한 구조로 되어 있다. 특히 농업용 저수지는 도시 근교나 농촌지역에 많이 위치하고 있어 유역 내 축산 농가나 미처리 생활하수에서 유래된 유기물 및 영양염류 유입에 의한 수질오염도가 높다. 저수지에 고농도로 유입되는 유기물, TN, TP를 처리하기 위하여 농어촌연구원과 수생태복원(주)에서는 공동으로 친환경 수처리시설인 생태융합형 접촉산화시스템을 개발하였다. 생태융합 접촉산화수로는 상부 식생과 수로 내의 섬유상 끈상 미생물 접촉재를 이용하여 오염수가 수로를 흐르면서 침전, 여과, 흡착, 산화, 흡수 등 물리학적, 화학적, 생물학적 원리를 이용하여 고농도의 유기물과 질소, 인을 제거하는 물리적, 생물학적 공정을 융복합 기술이다. 본 연구에서는 경기도 시흥시에 소재하고 있는 M 저수지에 현장 Test-bed를 구축하여 수질정화효율을 평가하였다. M 저수지는 유효저수지량이 약 23만톤에 해당하는 소규모 저수지로, 1941년도 준공된 아주 노후화된 저수지로 평균 수심이 2m 이하이고 연중 수질오염도가 높은 저수지이다. 매화저수지 수변에 설치된 생태융합형 접촉산화수로의 전체규모는 길이 8.6m, 폭 2m, 수심 2m에 해당하며, 끈상 미생물 메디아조 3개($2{\times}2{\times}6m^3$), 침전조 1개($2{\times}2{\times}2m^3$)로 구성되어 있다. 기타 부대 장치로는 끈상 메디아조에 산소공급을 위한 Air-mist(마이크로 버블 발생장치), 자동운전계기판, 유입펌프 등이 있다. 생태융합형 접촉산화수로의 처리 공정은 유입수${\rightarrow}$에어미스트${\rightarrow}$고속복합응집장치${\rightarrow}$융복합 산화조(3조)${\rightarrow}$침전조${\rightarrow}$방류로 구성되어 있다. 테스트 베드는 2015년 8월 말경에 구축 완료하였으며, 끈상 미생물 메디아조의 수질정화효율을 평가하기 위하여 9월부터 11월까지 총 7회 걸쳐 유입수와 유출수를 각각 조사하였다. 현장 측정항목인 수온, pH, EC, DO 등은 유입수 및 유출수간 큰 차이가 없었고, COD, SS, Chl-a, TP 등은 수처리시스템 초기 가동시에는 메디아에 미생물 부착율 저조로 유입수 및 유출수 수질농도에 큰 차이가 없었으나, 운영시간의 경과와 함께 메디아의 미생물 충진율이 높아짐에 따라 처리효율이 최대 SS 69.6%, Chl-a 89.3%, TP 89%까지 도달하는 것으로 나타났다. 생태융합 접촉산화수로는 부지 집약적인 컴팩트한 수처리 시설로서 현재 널리 이용되고 있는 인공습지를 대체할 수 있는 경제적인 시설로 판단된다.

  • PDF

Production of air purification verification system using moss (이끼를 활용한 공기정화 검증 시스템 제작)

  • Ahn, Dohyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권6호
    • /
    • pp.587-591
    • /
    • 2019
  • Fine dust aerated in the atomsphere penetrates our lungs and blood lines through respiratory. Recent fine dust problems in Korea leads to development of various air purifiers. The researchers used this to study systems that could replace chemical filters. In order to compare the effect of the reduction of moss and conventional chemical filter(Hepa), a 1 cubic meter cube was prepared and the amount of the concentration of fine dust reduction was compared under controlled environment. Under the high concentration of fine dust, a test was done to figure out the reduction rate of the fine dust concentration by using air purification system with moss, hepa, and no filter. The air purification system(moss, hepa, and no filter) were operated 90 times in total, 30 times each. The test explains that the reduction of the fine dust amount and the rate of fine dust concentration. The results illustrate that the reduction of the amount fine dust was 138.93 after using air purification system with moss filter. In contrast, the usage of air purification system with hepa filter reduced the amount of fine dust to 76.57. And the air purification with no filter shows that the slight reduction of fine dust amount at 0.10. In the rate of fine dust concentration, moss filter was significantly higher than that of hepa, no filter (0.2379, 0.1298 and 0.0063 each). The results have confirmed that moss is effective in reducing fine dust concentration, and it is expected that with further improvement it can be used as a means to replace or supplement existing chemical filters in air purifier.

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • 제24권1호
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

A study on the removal characteristics of bisphenol in water by coagulation (응집에 의한 Bisphenol A의 제거특성)

  • Park, Jihyun;Shin, Daeyewn;Park, Sunku
    • Analytical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.181-187
    • /
    • 2006
  • This study was carried to survey the removal characteristics of BPA using coagulation process by PAC and PAHCS. BPA removal for PAC and PAHCS was 20.4 with 8.7 Al mg/L and 6.8 Al mg/L, respectively. Removal of BPA was lower than $UV_{254}$ and DOC but removal characteristics were similar. BPA removal for PAC and PAHCS was most high in pH 6.5 and 7.0 respectively. The time for removal by mixing time was 40 min in PAC and 30 min in PAHCS. When powdered activated carbon 50 mg/L was added in coagulation process, a high remove of BPA (61%) was noticed. Specially BPA was highly increase powdered activated carbon 5 mg/L alone. These results will be appliable in the conventional water treatment plants for improvement of water treatment system.

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures (루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • 제32권3호
    • /
    • pp.3-8
    • /
    • 2023
  • This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.