• Title/Summary/Keyword: 흡착율

Search Result 867, Processing Time 0.033 seconds

Analysis of pollutant behavior in sediments in a Rain Garden through long-term monitoring (레인가든 내 장기모니터링을 통한 오염물질 거동분석)

  • Jeon, Minsu;Choi, Hyeseon;Reyes, N.J. DG.;Kim, Leehyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.339-339
    • /
    • 2020
  • 도시화로 인한 불투수면적의 증가와 기후 변화로 인한 강우패턴의 변화 자연적 물순환 체계에 악영향을 미치며. 이를 해결하기 위하여 국내에서는 도시 내 빗물관리 및 비점오염원 저감이 가능한 저영향개발(Low Impact Development, LID)를 적용하고 있다. 건기시 도로, 주차장등 차량통행 및 유동인구가 많은 지역에서는 입자상 물질들이 많이 발생되어 노면에 축적되어 있다가 강우시 강우유출수를 통해 시설로 유입된다. 이로 인해 시설 내 오염물질 및 퇴적물이 축적되어 여재 공극막힘현상 및 침투율저하의 문제가 발생되어 시설 내 효율이 감소된다. 따라서, 레인가든의 장기 모니터링을 통해 시설 내 유입되는 오염물질의 성상 분석 및 시설 내부의 퇴적물 분석을 통해 LID시설 운영의 효율성 평가를 수행하였다. 모니터링은 강우시 모니터링과 건기시 집수구역, 침강지, 시설 상부, 중부, 하부 등 총 5곳에서 채취하여 분석을 수행하였다. 모니터링은 평균 선행건기 일수는 5.46±4.7 days, 평균 강우량은 14.31±11.4 mm, 평균 강우강도는 5.33±6.7 mm/hr의 강우사상에서 모니터링을 수행하였다. 시설 내 평균 유입수농도는 TSS 98.0 ± 32.7 mg / L, COD 133.6 ± 6.3 mg / L, TN 5.77 ± 4.05 mg, TP 0.54 ± 0.03 mg / L으로 분석되었다. 유입부 내 퇴적물 종류는 Sandy Clay Loam으로 나타났으며, Cr 0.36mg / kg, Cu 5.17 mg / kg and Pb 6.04 mg / kg으로 중금속의 함유량이 높은것으로 분석되었다. 퇴적물은 침강지 및 시설 유입부에서의 입자크기는 49-113㎛ 약 60%의 퇴적물이 축적되어 제거되는 것으로 나타났다. 시설 내 침강지에서 50㎛ 이상의 입자들이 여과, 흡착 및 침전으로 인하여 40% 이상의 입자들이 제거되는 것으로 분석되었으며, 50㎛ 미만의 입자들은 시설 내 중간부, 유출부에서 제거되는 것으로 분석되었다. 침강지에서 유입수 대부분의 입자상물질들이 흡착 및 여과로 인한 제거가 이루어지기에 침강지 여재부는 넓은 표면적, 우수한 흡착능 및 여과율을 고려하여 선정하영 하며, 잦은 교체를 위하여 중량성이 낮은 우드칩 등이 적당한 것으로 사료된다.

  • PDF

A new formulation method of small amount wettable powders for pesticide screening (농약스크리닝을 위한 미량 수화제의 간편한 제제방법)

  • Yu, Ju-Hyun;Lee, Byung-Hoi;Cho, Kwang-Yun
    • Applied Biological Chemistry
    • /
    • v.33 no.4
    • /
    • pp.315-318
    • /
    • 1990
  • After technical pesticides and dispersants were dissolved in a volatile organic solvent, the wettable powders(WP's) were formulated by adsorbing the pesticide-dispersant solution to finely powdered porous synthetic silica without milling process. The median sizes of 11 WP'S were smaller than $8{\mu}m$, 9 of which had more than 80% suspensibility after 2 hours. It was possible In formulate 50% WP for liquid of fly technical pesticides. The pesticidal efficacies of WP's tested were comparable In commercial formulations regardless of suspensibilities of WP's.

  • PDF

Desorption and Regeneration Characteristics for Nickel Ions Loaded onto Sericite Using HNO3 Solution

  • Jeon, Choong
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.347-350
    • /
    • 2013
  • Desorption characteristics for ions adsorbed onto sericite was performed by means of $HNO_3$ solution which was selected as the best desorbing agent in the previous work. Elution of nickel ions adsorbed onto sericite using $HNO_3$ solution was confirmed by means of scanning electron microscopy (SEM) & energy dispersive X-ray spectroscopy (EDX) analysis. Desorption efficiency for nickel ions was 100% at the 20 mM of concentration. Also, nickel ions was completely desorbed within 1.0 of S/L (mg/mL) ratio which is defined as the ratio of adding amount of adsorbent and volume of desorbing agent and desorption process was quickly carried out within 60min. Finally, removal efficiency of reused sericite for nickel ions was constantly maintained until the 4th cycle.

Desorption and Regeneration Characteristics for Previously Adsorbed Silver Ions onto Crab Shells Using Nitric Acid (질산을 이용한 게껍질에 흡착된 은 이온의 탈착 및 재생 특성)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.82-87
    • /
    • 2013
  • A study on desorption and regeneration characteristics for silver ions adsorbed onto crab shells was carried out by means of Nitric acid soultion which was selected as the best desorbing agent. Desorption efficiency for silver ions was the highest as about 96% at the 1.0M of Nitric acid concentration. Also, silver ions was almost desorbed below 1.0 of S/L(mg/mL) ratio which is defined as the ratio of adding amount of adsorbent and volume of desorbing agent and most of desorption process was completed within 60min. And removal efficiency of reused crab shells for silver ions was maintained as about 92% until the 2nd cycle.

Effects of soil organic matter and oxidoreductase on adsorption and desorption of herbicide oxadiazon in soils (제초제 oxadiazon의 토양 흡탈착에 미치는 유기물의 함량과 산화환원효소의 영향)

  • Lee, Wan-Seok;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.70-78
    • /
    • 1998
  • Dissipation, adsorption and desorption of oxadiazon were examined in two soils containing different amounts of soil organic matter. In addition, reactivity of oxadiazon with humic monomers was searched to clarify binding mechanism of oxadiazon to soil organic matter in the presence of a laccase of Myceliophthera thermophila. Half lives of oxadiazon were 38 days in Soil I and 45 days in Soil II. Freundlich constant, k values of fresh soils were higher than those of oxidized soils. Adsorption rates of oxadiazon were increased 17.1% in Soil I and 9.3% in Soil II in the presence of a laccase but no significant increase was observed in oxidized soils. Desorption rates of oxadiazon in fresh soils were lower than those in oxidized soils. Desorption rates of adsorbed oxadiazon in soils addes with the enzyme were not changed in oxidized soils but decreased in fresh soils. The herbicide oxadiazon alone underwent no transformation by a laccase but in the presence of catechol, guaiacol and gallic acid as humic monomer, transformation rates of it were from 20% to 24%.

  • PDF

Changes of Adsorption Properties of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도 차이에 의한 목질탄화물의 흡착성 변화)

  • Jo, Tae-Su;Ahn, Byoung-Jun;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.45-52
    • /
    • 2005
  • This research was performed to evaluate adsorption behavior of woody charcoals obtained from wood powder, fiber and bark of spruce (Abies sibirica Ledeb). The wood materials were carbonized at various temperatures for 1 hour using experimental rotary kiln without any inert gas. The adsorption capacity of iodine and toluene, specific surface area and removal efficiency of acetic acid and ammonia gas of those charcoals were measured. The higher was the temperature for carbonization, the lower yields of charcoals were. Ash content of bark charcoal was higher than that of wood powder charcoal or fiber charcoal. Elemental analysis of woody charcoal revealed that the content of carbon was gradually lincreased as carbonization temperature was higher. When carbonization temperature was higher, adsorption capacity of woody charcoals for iodine was much improved. Wood powder charcoal and fiber charcoal were more effective for iodine adsorption rather than bark charcoal. Capacity of toluene adsorption was the highest in the charcoal of $600^{\circ}C$. Charcoals produced at high temperature efficiently removed acetic acid gas, while charcoals carbonized at low temperature such as $400^{\circ}C$ were proper to remove ammonia gas. This difference may be explained that the acidity of charcoals depends on the carbonization temperature: charcoals of low temperature indicate acidic property, while those of high temperature turned to alkaline.

Evaluation of Lanthanum(III)-Loess Composite as an Adsorbent for Phosphate Removal (인 제거를 위한 흡착제로서 란타늄-황토 복합체의 흡착특성)

  • Shin, Gwan-Woo;Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • In this work, a composite formed by adding loess with lanthanium ("La-Loess") was proposed for effective removal of phosphate found in confined water bodies such as lake and reservoir. It was found that the theoretical maximum amount of lanthanum that can be attached to Loess was 2.68 mg La/g Loess. The phosphate removal was enhanced as an added amount of La-Loess composite increased. Furthermore, there was a noticeable difference in phosphate removal between Loess and La-Loess as the latter required 1.5 to 10 times less Loess than the former. Both Isotherm equations of Freundlich and Langmuir can be used to explain the phosphate adsorption characteristics in using La-Loess composites. The phosphate removal was very effective in the pH range of 5~8, which means that the proposed adsorbent can be directly applied to natural water without adjusting pH. Also, the La-Loess composites were well settled within 30 min without causing turbidity in water. Consequently, the proposed La-Loess can be strongly recommended for phosphate removal in confined water bodies.

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.