• Title/Summary/Keyword: 흡착속도

Search Result 639, Processing Time 0.027 seconds

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.369-375
    • /
    • 2018
  • Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

Removal of Arsenite and Arsenate by a Sand Coated with Colloidal Hematite Particl (나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거)

  • 고일원;이상우;김주용;김경웅;이철효
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • Hematite-coated sand was examined for the application of the PRB (permeable reactive barrier) to the arsenic-contaminated subsurface in the metal mining areas. The removal efficiency of As in a batch and a flow system was investigated through the adsorption isotherm, removal kinetics and column experiments. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of As (<1.0 mg/L). In the column experiments, high content of hematite-coated sand enhanced the removal efficiency, but the amount of the As removal decreased due to the higher affinity of As (V) than As (III) and reduced adsorption kinetics in the flow system. Therefore. the amount of hematite-coated sand, the adsorption affinity of As species and removal kinetics determined the removal efficiency of As in a flow system.

Adsorptive Characteristics of Benzene and Toluene on Activated Carbon (활성탄상에서 벤젠과 톨루엔의 흡착특성)

  • Park, Byung-Bae;Kim, Do-Su;Kim, Han-Su;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 2001
  • The effects of various factors such as adsorption temperature, interstitial velocity, species and concentration of adsorbates(benzene and toluene) and aspect ratio(L/D) on adsorption characteristics were investigated in a fixed bed with activated carbon. The breakthrough time in a fixed bed was decreased with the increasing of adsorption temperature, interstitial velocity and concentration of adsorbates. The interstitial velocity, concentration of adsorbates and adsorption temperature had influenced considerably upon the MTZ(mass transfer zone) and LUB(length of unused bed) obtained through the breakthrough curves, while aspect ratio(L/D) had smaller effect than former factors. Especially, the concentration of adsorbates among factors have the largest effect on MTZ and LUB. From comparison with the model isotherms, such as the Langmuir, Freundlich and Langmuir-Freundlich, the experimental isotherm data of benzene and toluene agreed farily well to three adsorption isotherm models.

  • PDF

Technology of Minimized Damage during Loading of a Thin Wafer (박판 웨이퍼의 적재 시 손상 최소화 기술)

  • Lee, Jong Hang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.321-326
    • /
    • 2021
  • This paper presents a technique to minimize damaged wafers during loading. A thin wafer used in solar cells and semiconductors can be damaged easily. This makes it difficult to separate the wafer due to surface tension between the loaded wafers. A technique for minimizing damaged wafers is to supply compressed air to the wafer and simultaneously apply a small horizontal movement mechanism. The main experimental factors used in this study were the supply speed of wafers, the nozzle pressure of the compressed air, and the suction time of a vacuum head. A higher supply speed of the wafer under the same nozzle pressure and lower nozzle pressure under the same supply speed resulted in a higher failure rate. Furthermore, the damage rate, according to the wafer supply speed, was unaffected by the suction time to grip a wafer. The optimal experiment conditions within the experimental range of this study are the wafer supply speed of 600 ea/hr, nozzle air pressure of 0.55 MPa, and suction time of 0.9 sec at the vacuum head. In addition, the technology improved by the repeatability performance tests can minimize the damaged wafer rate.

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

Heavy Metal Adsorpton on AsO4-Substituted Schwertmannite (AsO4로 치환된 슈베르트마나이트의 중금속 흡착 특성)

  • Kim, Byungi-Ki;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • The $AsO_4$ ion in acid mine drainage has been known to substitute for $SO_4$ in schwertmannite and prevent schwertmannite from being converted to goethite. There have been studies on the heavy metal sorption on schwertmannite, but no experimental results have been reported on the characteristics of heavy metal sorption on $AsO_4$-substituted schwertmannite. In this study, we conducted sorption experiments of Cu, Pb, and Zn on the $AsO_4$-substituted schwertmannite at pH 4 and 6 in the solution of 3, 10, 30, and 100 mg/L concentrations. For all heavy metals, the sorbed heavy metals significantly increase at pH 6 compared with at pH 4. At both pH 4 and 6, Pb shows the highest sorption capacity and those of Cu and Zn are similar. With increasing time, the sorbed heavy meal contents increase too. However, in the case of Zn, the most sorptions occur at the initial stage and no significant increase is observed with time. Among the concentration ranges in which we conducted the experiment, the increasing trend is clear in high concentrated solutions such as 100 mg/L. We applied several sorption kinetic model and it shows that the diffusion process may be the most important factor controlling the sorption kinetics of Cu, Pb, and Zn on $AsO_4$-substituted schwertmannite. Considering the previous results that pure schwertmannite has similar sorption capacity for all three heavy metals at pH 6 and has higher sorption capacity for Cu and Pb than Zn at pH 4, our experiments indicates that substitution of $AsO_4$ for $SO_4$ on schwertmannite changes surface and sorption characteristics of schwertmannite. It also shows that $AsO_4$ contributes not only to the stability of schwertmannite, but also to the mobility of heavy metals in acid mine drainage.

Analysis of Sorption and Desorption Behaviors of Radionuclides (Cobalt and Strontium) in Natural Soil (자연 토양에서의 방사성 핵종(Co, Sr)의 흡/탈착 거동 특성 평가)

  • Cheon Kyeong-Ho;Shin Won Sik;Choi Jeong-Hak;Choi Sang June
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.485-495
    • /
    • 2005
  • This study was conducted to investigate sorption and desorption behaviors of radionuclides (Cobalt and Strontium) in natural soil. Sorption kinetics and isotherms were analyzed to predict sorption behaviors of radionuclides in natural soil and the experimental data were fitted to several sorption models. Desorption experiments were also performed with or without CMCD at constant pH and ion strength conditions. The results showed that $Sr^{2+}$ was more strongly sorbed than $Co^{2+}$ in natural soil. Both $Co^{2+}$ and $Sr^{2+}$ followed a pseudo-second order kinetics and Sips model. The desorption-resistance of $Co^{2+}$ and $Sr^{2+}$ was estimated using a natural surfactant Carboxymethyl-${\beta}$-cyclodextrin(CMCD) or non-desorbing fraction. Desorption of radionuclides was partially irreversible and $Sr^{2+}$ was more resistant than $Co^{2+}$ Addition of CMCD facilitated desorption of $Co^{2+}$ and $Sr^{2+}$ from soil.

  • PDF

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).