• Title/Summary/Keyword: 흡착범위

Search Result 419, Processing Time 0.026 seconds

Heavy Metal Adsorpton on AsO4-Substituted Schwertmannite (AsO4로 치환된 슈베르트마나이트의 중금속 흡착 특성)

  • Kim, Byungi-Ki;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • The $AsO_4$ ion in acid mine drainage has been known to substitute for $SO_4$ in schwertmannite and prevent schwertmannite from being converted to goethite. There have been studies on the heavy metal sorption on schwertmannite, but no experimental results have been reported on the characteristics of heavy metal sorption on $AsO_4$-substituted schwertmannite. In this study, we conducted sorption experiments of Cu, Pb, and Zn on the $AsO_4$-substituted schwertmannite at pH 4 and 6 in the solution of 3, 10, 30, and 100 mg/L concentrations. For all heavy metals, the sorbed heavy metals significantly increase at pH 6 compared with at pH 4. At both pH 4 and 6, Pb shows the highest sorption capacity and those of Cu and Zn are similar. With increasing time, the sorbed heavy meal contents increase too. However, in the case of Zn, the most sorptions occur at the initial stage and no significant increase is observed with time. Among the concentration ranges in which we conducted the experiment, the increasing trend is clear in high concentrated solutions such as 100 mg/L. We applied several sorption kinetic model and it shows that the diffusion process may be the most important factor controlling the sorption kinetics of Cu, Pb, and Zn on $AsO_4$-substituted schwertmannite. Considering the previous results that pure schwertmannite has similar sorption capacity for all three heavy metals at pH 6 and has higher sorption capacity for Cu and Pb than Zn at pH 4, our experiments indicates that substitution of $AsO_4$ for $SO_4$ on schwertmannite changes surface and sorption characteristics of schwertmannite. It also shows that $AsO_4$ contributes not only to the stability of schwertmannite, but also to the mobility of heavy metals in acid mine drainage.

Adsorption Characteristics of Ammonia Complex of Copper(II) on Activated Carbon (활성탄에 의한 구리(II) 암모니아 착염이온의 흡착 특성)

  • Hong, Wan-Hae;Kim, Jung-Gyu;Na, Sang-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • The adsorption characteristics of ammonia-Cu(II) complex on activated carbon were studied. Firstly, the specific surface area of the activated carbon was measured by using the BET adsorption apparatus. Secondly, the characteristics of the removal copper(II) ion from aqueous ammonia solution by forming a complex with ammonia and then by the adsorption of the complex on the activated carbon were studied. It was found that the specific surface area increases with decreasing the mesh number of the activated carbon, and the optimum pH for the adsorption of the Cu(II) ion on she activated carbon was found to be approximately 6. It was also found that the adsorbed Cu(II)-ammonia complexes on the activated carbon in the aqueous ammonia solution have two types, depending on the concentration of the solution ; i.e. $[Cu(NH_3){_2}]^{2+}$and $[Cu(NH_3){_3}]^{2+}$ for $2.25{\times}10^{-4}(mol/{\ell})$and $2.25{\times}10^{-3}(mol/{\ell})$, respectively.

  • PDF

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Hydrogen Separation of binary gas mixture Using Templating Silica Membrane (유기 템플레이팅 실리카 막을 이용한 이성분 수소 혼합기체 분리 메커니즘)

  • Bae, Ji-Han;Han, Yoon-Jin;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.522-525
    • /
    • 2008
  • 최근 세라믹 막은 우수한 화학적, 열적 안정성으로 기체 분리 공정에 각광을 받아 왔다. 특히 혼합기체에서 고 순도의 수소를 분리해 내는 기술은 연료전지 공정에서 화학 에너지를 전기화학 에너지로 전환시키는데 중요한 역할을 차지한다. 본 연구에서는MTES 템플레이팅 막을 이용하여 이 막 공정의 흡착 및 투과 특성을 규명하고, 이성분 혼합기체에서 고 순도의 수소를 추출해 낼 수 있는 최적 조건을 도출해 내었다. 또한, 기체 분리 거동을 살펴보기 위해 Gproms Dynamic Simulator를 이용하였으며, 이때 기체상의 물질전달을 모사하기 위해 Dust Gas Model(DGM)을, 표면 확산 거동을 모사하기 위해 Generalized Stefan-Maxwell(GSM)식을 적용하였다. 이를 통해 평형론적 흡착 뿐 아니라 속도론적 흡착을 동시에 적용할 수 있게 하였다. MTES 템플레이팅 막의 흡착 및 분리능을 규명하기 위해 본 연구에서는 혼합기체의 투과, 분리 실험이 선행되었다. 실험 조건은 온도범위 323$\sim$473 K, 압력범위 0$\sim$7 atm에서 수행되었으며, 혼합기체는2성분으로 수소-메탄, 수소-이산화탄소, 수소-질소로 기체의 구성비는 각각 50:50 이다. 본 연구를 통해 각 혼합 기체들이 정상상태에 도달하는 시간과 분리능을 계산해 내었으며, 이 분리능을 다시 온도와 압력에 따른 결과로 분석하여 어느 조건에서의 수소 분리도가 최고치를 보이는지를 규명했으며, 시뮬레이션과 비교,대조하여 예측도를 검사하였다.

  • PDF

Hydrogen Separation of Membrane Using MTES Templating Silica Membrane (MTES(methyltriethoxysilane)템플레이팅 실리카막을 이용한 수소 혼합기체 분리)

  • Bae, Ji-Han;Kim, Kyung-Min;Jung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.105-108
    • /
    • 2007
  • 최근 세라믹 막은 우수한 화학적, 열적 안정성으로 기체 분리 공정에 각광을 받아왔다. 특히 혼합기체에서 고 순도의 수소를 분리해 내는 기술은 연료전지 공정에서 화학 에너지를 적기화학 에너지로 전환시키는데 중요한 역할을 차지한다. 본 연구에서는 MTES 템플레이팅 막을 이용하여 이 막 공정의 흡착 및 투과 특성을 규명하고, 이성분 혼합기체에서 고 순도의 수소를 추출해 낼 수 있는 최적 조건을 도출해 내었다. 또한, 기체 분리 거동을 살펴보기 위해 Gproms Simulator를 이용하였으며, 이때 기체상의 물질전달을 모사하기 위해 Dust Gas Model(DGM)을, 표면 확산 거동을 모사하기 위해 Generalized Stefan-Maxwell(GSM)식을 적용하였다. 이를 통해 평형론적 흡착 뿐 아니라 속도론적 흡착을 동시에 적용할 수 있게 하였다. MTES 템플레이팅 막의 흡착 및 분리능을 규명하기 위해 본 연구에서는 혼합기체의 투과, 분리 실험이 선행되었다. 실험 조건은 온도범위 $30{\sim}50$ $^{\circ}C$, 압력범위 $0{\sim}5$ atm에서 수행되었으며, 혼합기체는 2성분으로 수소 메탄, 수소-이산화탄소, 수소-질소로 기체의 구성비는 각각 50:50 이다. 본 연구를 통해 각 혼합 기체들이 정상상태에 도달하는 시간과 분리능을 계산해 내었으며, 이 분리능을 다시 온도와 압력에 따른 결과로 분석하여 어느 조건에서의 수소 분리도가 최고치를 보이는지를 규명했으며, 시뮬레이션과 비교, 대조하여 예측도를 검사하였다.

  • PDF

Effect of Temperature on Cu Adsorption and Competitive Adsorption of Zn and Cu onto Natural Clays using Combined Adsorption-sequential Extraction Analysis(II) (혼합 흡착-연속추출법을 이용한 점토 차수재의 구리(Cu) 흡착 및 아연과 구리 경쟁 흡착 시 온도 영향에 관한 연구(II))

  • 도남영;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.157-170
    • /
    • 2000
  • In this study, we conducted a combined adsorption-sequential extraction analysis(CASA) to investigate temperature effects of single and competitive adsorption of zinc and copper on natural clays. As a result, it was found out that in a single adsorption of zinc, the adsorption was mostly in the exchangeable phase, with increase n temperature. In a competitive adsorption of zinc, this trend was so strong that the exchangeable phase adsorption increase up to 80~90%. On the other hand, about 50% of copper was adsorbed in the carbonate occluded phase in single and competitive adsorptions. In the single adsorption the adsorption of carbonate occluded phase increased by 5% with the temperature increase and in the competitive adsorption the increase rate is about twice. The adsorption of zinc and copper on natural clays is an endothermic reaction with the exception of exchangeable phase adsorption.

  • PDF

Adsorption Behavior of Organic Dye on Granular Clay (입상점토광물에 대한 염료폐수의 흡착)

  • Lee, Tack-Hyuck;Youn, Guk-Jung;Kim, Seon-Tae
    • The Journal of Natural Sciences
    • /
    • v.13 no.1
    • /
    • pp.35-50
    • /
    • 2003
  • Granular clay minerals for adsorption of the organic dye prepared a Na-Bentonite and optimum condition calcined temperature $700^{\circ}C$ and polyvinyl alcohol quantity was 25%. Granular clay mineral stable range was pH3 to pH9 and specific area was $83m^2/g$. The adsorption of the organic dye on the Granular clay mineral showed result good adsorption with acid medium and then enthalpy was -3.36 ~ -0.84 kcal/mol. It was exhibit typical physical adsorption.

  • PDF

Adsorption of Cadmium and Lead on Organobentonite (유기 벤토나이트에 의한 카드뮴과 납의 흡착특성)

  • 유지영;최재영;박재우
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.21-29
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify adsorption of heavy metals. Adsorption of cadmium and lead increased with increasing pH and soil/solution ratio. Based on these experiments, an optimal soil/solution ratio and an optimal pH was selected. Adsorption experiments with cadmium and lead were conducted to quantify adsorption selectivity on bentonite and organobentonite. Adsorption of heavy metals on organobentonite was slightly reduced relative to bentonite. Because of competition between cadmium and lead, adsorption of each metal was reduced due to the presence of the other. Adsorption selectivity of cadmium was higher than lead. This study used the principle of hard soft-acid-base (HSAB) to interpret adsorption.

  • PDF

A Study on the Removal Characteristics of Phenol Using Waste CDQ Dust as Adsorbent (폐CDQ 분진을 흡착제로 한 페놀제거특성에 관한 연구)

  • Kim, Jin-Wha;Lee, Jung-Min;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1213-1223
    • /
    • 2000
  • The adsorption characteristics of phenol has been studied by using CDQ (Cokes Drying Quenching) dust as an adsorbent. The adsorption capacity of CDQ dust was shown to be 42% about removal for 300 ppm phenol solution at the equilibrium adsorption time of 60 min. Removal percentage of phenol increased as the initial phenol concentration was raised in the experimental conditions and the adsorption behavior was explained well by Freundlich adsorption isotherm. Kinetic study showed that the adsorption followed 1st, 1.5th, and 2nd-order rate equation in the sequence as the adsorption time passed. Since the adsorption amount of phenol was increased as the adsorption temperature was raised, the adsorption was thought to be endothermic, and several thermodynamic parameters have been calculated based upon experimental data. Adsorbed amount of phenol on CDQ dust changed little according to the variation in the solution pH except for the slight decrease under the strong alkaline condition.

  • PDF

Adsorption Characteristics of Malachite Green on Zeolite (제올라이트에 의한 말라카이트 그린의 흡착특성)

  • Lee, Jong-Jib;Um, Myeong-Heon
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • Malachite green is used a dye but malachite green is harmful toxic substance. In this study, the adsorption characteristics of zeolite has been investigated for the adsorption of malachite green dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of malachite green by a fixed amount of zeolite have been studied in batch adsorber and fixed bed. The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 25 to $45^{\circ}C$. The estimated values of k and ${\beta}$ are 23.60-46.88, 0.225-0.347, respectively. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet concentration and initial flow rate of malachite green are increased, the corresponding adsorption breaktime appears to decrease. Breaktime increased with increasing bed height and length of adsorption zone showed similar patterns.