• Title/Summary/Keyword: 흡착률

Search Result 201, Processing Time 0.032 seconds

Experimental Study on the Hydrodynamic Dispersion of Contaminants in Geologic Media : Adsorption and Diffusion of Sr and Cr-EDTA in Granitic Rocks (수리지질계에서 지질매체에 따른 오염물질의 수리분산에 관한 실험적 연구 : 화강암질암에서 Sr과 Cr-EDTA의 흡착 및 확산에 관한 연구)

  • Chang, Ho-Wan;Lee, Kwang-Sik
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • To investigate the migration behavior of contaminants in rocks. adsorption and diffusion experiments for Sr as a sorbing contaminant and for Cr-EDTA as a non-sorbing contaminant were carried out on granitic rocks. The Sr adsorption on separated minerals and crushed rocks tends to slightly increase with increasing pH. It also greatly decreases with the increase of ionic strength in NaCl solution. Among separated minerals, biotite and sericite have adsorbed much more amount of Sr than other rock-forming minerals, such as quartz, plagioclase, and potassic feldspar, because the specific surfaces and cation exchange capacities of phyllosilicates are generally much greater than those of the other rock-forming minerals. The intrinsic diffusion coefficients of Cr-EBTA for granitic rocks differ little from those of Sr. This indicates that they are independent of water-rock interactions. Experimental data show that the intrinsic diffusion coefficients are positively correlated with the porosities of the rocks. They are close to the theoretically predicted values, especially in pre-steady state diffusion region, with the increase of rock sample thickness.

  • PDF

Comparison of Dry Etching of AlGaAs/GaAs in High Density Inductively Coupled $BCl_3$ based Plasmas ($BCl_3$에 기초한 고밀도 유도결합 플라즈마에 의한 AlGaAs/GaAs 건식식각 비교)

  • ;;;;;S. J. Pearton
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.63-63
    • /
    • 2003
  • 플라즈마 공정은 DRAM, 이종접합 양극성 트랜지스터(HBTs), 레이저, 평면도파로(planar lightwave circuit)와 같은 전자소자 및 광조자 제작에 있어서 핵심 공정중의 하나이다. 최근 미세 구조의 크기가 극도로 감소하게 됨에 따라 실제 소작 제작에 있어서 미세한 모양을 식각하는 공정이 매우 중요하게 되었다. 그 중에서 고밀도 유도결합 플라즈마(high density inductively coupled plasma)를 이용한 기술은 빠르고 정확한 식각률, 우수한 식각 균일도와 높은 재현성 때문에 습식식각 기술보다 선호되고 있다. 본 연구는 평판형(planar) 고밀도 유도결합 플라즈마 식각장치를 이용하여 BCl$_3$와 BCl$_3$/Ar 플라즈마에 따른 AlGaAs/GaAs의 식각결과를 비교 분석하였다. 공정 변수는 ICP 소스(source power)파워, RIE 척(chuck) 파워, 공정 압력, 그리고 Ar 조성비(0-100%)이었다. BCl$_3$에 Ar을 첨가하게 되면 순수한 BCl$_3$ 플라즈마에서의 AlGaAs/GaAs 식각률(> 3000 $\AA$/min) 보다 분당 약 1000$\AA$ 이상 높은 식각률(>4000 $\AA$/min)을 나타내었다. 이 결과는 Ar 플라즈마의 이온보조(ion-assisted)가 식각률 증가에 기인한다고 예측된다. 그리고 전자주사 현미경(SEM)과 원자력간 현미경(AFM)을 사용하여 식각 후 표면 거칠기 및 수직 측벽도 둥을 분석하였다. 마지막으로 XPS를 이용하여 식각된 후에 표면에 남아 있는 잔류 성분 분석을 연구하였다. 본 결과를 종합하면 BCl$_3$에 기초한 평판형 유도결합 플라즈마는 AlGaAs/GaAs 구조의 식각시 많은 우수한 특성을 보여주었다.79$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 2는 0.045$\ell/\textrm{cm}^3$, 0.014$\ell/\textrm{cm}^3$, 혼합재료 3은 0.123$\ell/\textrm{cm}^3$, 0.017$\ell/\textrm{cm}^3$, 혼합재료 4는 0.055$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 5는 0.031$\ell/\textrm{cm}^3$, 0.015$\ell/\textrm{cm}^3$, 혼합재료 6은 0.111$\ell/\textrm{cm}^3$, 0.020$\ell/\textrm{cm}^3$로 나타났다. 3. 단일재료의 악취흡착성능 실험결과 암모니아는 코코넛, 소나무수피, 왕겨에서 흡착능력이 우수하게 나타났으며, 황화수소는 펄라이트, 왕겨, 소나무수피에서 다른 재료에 비하여 상대적으로 우수한 것으로 나타났으며, 혼합충진재는 암모니아의 경우 코코넛과 펄라이트의 비율이 70%:30%인 혼합재료 3번과 소나무수피와 펄라이트의 비율이 70%:30%인 혼합재료 6번에서 다른 혼합재료에 비하여 우수한 것으로 나타났으며, 황화수소의 경우 혼합재료에 따라 약간의 차이를 보였다. 4. 코코넛과 소나무수피의 경우 암모니아가스에 대한 흡착성능은 거의 비슷한 것으로 사료되며, 코코넛의 경우 전량을 수입에 의존하고 있다는 점에서 국내 조달이 용이하며, 구입 비용도 적게 소요되는 소나무수피를 사용하는 것이 경제적이라고 사료된다. 5. 마지막으로 악취제거 미생물균주를 접종한 소나무수피 70%와 펄라이트 30%의 혼합재료를 24시간동안 장기간 운전

  • PDF

Research on Adsorption Capacity of Acetaminophen for Constructed Wetland Design (인공습지 설계를 위한 여재 아세트아미노펜 흡착능 실험)

  • Jin Hong;Yuhyeon Kim;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.272-278
    • /
    • 2024
  • Due to industrialization, a trace amount of residues of pharmaceuticals and personal hygiene products (PPCPs) flows into the ecosystem, polluting the ecosystem. In particular, it was intended to remove trace pollutants flowing into the effluent due to the increase in the amount of acetaminophen detected after COVID 19. To conduct this experiment, selected 6 media which are suitable for construcgted wetland and isothermal adsorption experiments. Langmuir equation and the Freundlich equation were used to calculate the maximum removal rate of acetaminophen. Among them, the Freundlich equation showed a higher result value of 0.9823. It was applied when forming constructed wetlands in urban areas to model the reduction rate of acetaminophen in wetlands.

The Copper Adsorption onto Hwangto Suspension from Pankok-ri, Kosung-gun (경남 고성군 판곡리 황토 현탁액의 구리 흡착 특성)

  • Cho Hyen Goo;Park Sooja;Choo Chang Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Adsorption behavior of Cu onto Hwangto, from Pankok-ri, Kosung-gun, suspension was studied using Cu batch adsorftion experiment and computer program MINTEQA2 and FITEQL 3.2. The sorption of copper was investigated as a function of pH, copper concentration and $NaNO_3$ background concentration (0.01 and 0.1 M). The concentration of copper was analyzed using ICP-AES. The sorption of copper onto Hwangto suspension increased with increasing pH and copper concentration. The adsorption percentage of copper drastically increased from pH 5.5 to 6.5, and reached nearly 100% at pH 7.5. Because the amount of copper solution and the ionic strength of background electrolyte may not affect the sorption of copper onto Hwangto, the copper ion may be combined at the surface of Hwangto as an inner-sphere complex. Using the MINTEQA2 program, the speciation of copper was calculated as a function of pH and copper concentration. The concentration of $Cu^{2+}$ decreased and that of $Cu(OH)_2$ increased with increasing pH. The uptake of copper in the Hwangto suspension was simulated by FITEQL3.2 program using two sites-three pKas model, which is composed of silicate reaction site and Fe oxide reaction site. The copper absorption reaction constants were calculated in the case of 2~6 mL of copper solution. The Fe oxide reaction site rapidly adsorbs copper ion between pH 4.5~6.5. Silicate reaction site adsorbs little copper ion at low copper concentration but much at high copper concentration. The removal amount of copper by precipitation was negligible in comparison with that of adsorption. The Fe oxide reaction site may has higher adsorption affinity of copper ion than silicate reaction site.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

반응염료의 현황과 문제점

  • 김공주
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.77-91
    • /
    • 1994
  • 1956년 반응염료가 시판된 이래 장족의 발전을 하였으며, 구형의 cellulose용 염색을 추월하여 거의 대부분의 cellulose의 염색에 반응염료, 일변도로 사용되고 있는 것이 현실이다. 그러나 많은 반응 염료의 장점에도 불구하고 세월이 가면서 문제점도 만만치 않다. 장점으로는 색상이 선명하고 견뢰도가 우수하고 응용범위가 넓고 조작이 용이하다는 점이며, 문제점으로 나타난 것은 흡착염색공정에서 다량의 전해질과 알칼리제를 첨가함에도 불구하고 흡착율, 고착율이 낮고 염색후의 세정공정과 많은 물과 energy 및 시간을 필요로 한다는 사실이다. 또한 최근 더욱 관심을 끈 것은 반응염료의 가수분해 현상으로 인하여 다량의 가수분해된 염료가 폐수화하여 버려짐으써 심각한 공해가 야기할 뿐만 아니라 염색물에 부착하여 견뢰도에도 영향이 많다. 이런 문제를 염료제조업계에서는 해결하지 않으면 안될 시점에 와 있다. 이와 같은 문제점을 염료의 구조적인 면, 염색적인 면 그리고 소비자의 취급적인 면에서 검토하여 과거의 영광을 존속하기 위하여 개량형의 염료를 합성하여 고고착률, wash-off성의 양호 및 일광, 염소, 땀, 세탁 등에 견뢰한 염료를 얻고자 반응염료의 현황과 문제점을 정리해 보고자 한다.

  • PDF

A study of characteristic in Dye-sensitized solar cells according to the $TiO_2$ area and dye adsorption time ($TiO_2$ 면적 및 염료 흡착 시간에 따른 염료 감응형 태양전지(DSCs)의 특성 연구)

  • Son, Young-Joo;Lee, Don-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1586-1587
    • /
    • 2011
  • 염료 감응 태양전지(DSCs)는 최근 큰 발전을 이루고 있지만, 효율개선과 비용절감 등의 과제를 여전히 안고 있다. 염료 감응 태양전지(DSCs)의 효율 상승을 위해 염료, $TiO_2$ 산화물, 투명전극, 전해질 및 Pt 전극에 관한 연구가 활발히 진행 되고 있다. 본 연구에서는 염료 감응 태양전지(DSCs)의 특성 분석을 위해 $TiO_2$ 두께를 $20{\mu}m$로 지정하고 면적을 $0.5{\times}0.5\;Cm^2$에서 $1.5{\times}1.5\;Cm^2$까지 증가시켜 개방전압($V_{oc}$), 단락전류밀도($J_{sc}$), 충진률 FF(%), 광전변환효율(${\eta}$)등의 특성을 분석해 보았다. 또한 염료가 흡착되는 시간을 12시간과 24시간으로 변화시켜 최적의 특성을 가지는 DSCs를 연구해 보았다.

  • PDF

Epidermal Changes of the Adhesive Disks During Wall Attachment in Parthenocissus tricuspidata (착생에 따른 담쟁이덩굴 흡착근 표피조직의 변화)

  • Kim, Jung-Ha;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • The present study examined the epidermal changes of adhesive disks which occur during attachment in Parthenocissus tricuspidata using scanning and transmission electron microscopy. Several adhesive disks, each covered with a bract, develop from the shoot apical meristem during early development. In the initial stage, the adhesive disks are club-shaped and their upper and lower epidermis are indistinguishable. However, in the actively growing stage, they become spherical and both epidermis are clearly differentiated into the adventitious roots. Prior to wall attachment, the adhesive disks exhibit adaxial convex and abaxial concave shapes, and electron-dense substances are abundant in the vacuoles of epidermal cells. The peripheral area of the adhesive disk is adhered first to the wall surface, while the central area is drawn inward in a vacuum-like state during attachment. As the attachment progresses and the electron-dense substances continue to discharge, the upper and lower epidermis rapidly undergo deterioration and the disks shrink considerably. At this stage, structural changes of the lower epidermis occur much faster than in the upper one. The discharged substance is accumulated on the wall surface, and this aids the attachment of adhesive disks on the wall for long periods. In this manner, the shape and structure of the adhesive disk epidermis change drastically from initial growth to the mature stage. Further, the role of electron-dense substance and shrinkage of the disk during attachment has been discussed in Parthenocissus tricuspidata.

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.

Prediction of Adsorption Isotherms and Diffusivity on Activated Carbon for Persistent Organic Pollutant(2,3,7,8-TCDD) (활성탄 위에서 잔류성 유기 오염물질(2,3,7,8-TCDD)의 등온 흡착식 및 확산계수 예측)

  • Lim, Young-Il;Son, Hae-Jeong;Lee, Ohsung;Nam, Kyong-Soo;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.747-754
    • /
    • 2009
  • In this study, adsorption isotherms of o-DCB(ortho-dichlorobenzene) on an activated carbon heated at $1000^{\circ}C$ for 24 hours were obtained by experiment and were predicted by using molecular simulation. The initial molecular structure of the activated carbon was designed on the basis of its molecular formula and functional groups ratio measured experimentally. Then, the molecular structure was optimized using the COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field. The particle porosity, specific surface area, and particle density obtained from the optimized molecular structure of activated carbon were compared with those experimental data. The errors between experimental data and simulation results of the particle porosity, specific surface area, and particle density were shown as 7.6, 3.8, and 2.8%, respectively. Adsorption isotherms constants of o-DCB are calculated by the GCMC(grand canonical Monte Carlo) method in the optimized molecular structure of activated carbon. The simulation result of the adsorption isotherms showed an error of under 3%, compared to that of experimental data. Adsorption isotherms, adsorption heat and pore diffusivity of 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) was finally obtained in the same molecular structure of the activated carbon as used for o-DCB. Thus, adsorption characteristics of persistent organic pollutants on activated carbon, which are not easy to experimentally evaluate, are predicted by the molecular simulation.