• Title/Summary/Keyword: 흡착등온식

Search Result 312, Processing Time 0.027 seconds

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags (페로니켈슬래그와 제강급랭슬래그의 인 흡착특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Park, Min-Gyu;Kang, Byung-Hwa;Lee, Sang-Won;Lee, Seong-Tae;Choi, Ik-Won;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • BACKGROUND: The ferronickel and rapid cooling slags used in present study are industrial wastes derived from a steel factory in Korea. These slags are used as almost road construction materials after magnetic separation. However, the use of slag to remove phosphorus from wastewater is still a relatively less explored. The objective of this work was to evaluate the feasibility of ferronickel slag (FNS) and rapid cooling slag (RCS) as sorbents for phosphorus removal in wastewater. METHODS AND RESULTS: Adsorption experiments were conducted to determine the adsorption characteristics of the FNS and RCS for the phosphorus. Adsorption behaviour of the phosphorus by the FNS and RCS was evaluated using both the Freundlich and Langmuir adsorption isotherm equations. FNS and RCS were divided into two sizes as effective sizes. Effective sizes of FNS and RCS were 0.5 and 2.5 mm, respectively. The adsorption capacities (K) of the phosphorus by the FNS and RCS were in the order of RCS 0.5 (0.5105) > RCS 2.5 (0.3572) ${\gg}$ FNS 2.5 (0.0545) ${\fallingdotseq}$ FNS 0.5 (0.0400) based on Freundlich adsorption isotherm. The maximum adsorption capacities (a; mg/kg) of the phosphorus determined by the Langmuir isotherms were in the order of RCS 0.5 (3,582 mg/kg) > RCS 2.5 (2,983 mg/kg) > FNS 0.5 (320 mg/kg) ${\fallingdotseq}$ FNS 2.5 (187 mg/kg). RCS 0.5 represented the best sorbent for the adsorption of phosphorus. In the experiment, the Langmuir model showed better fit with our data than the Freundlich model. CONCLUSION: This study indicate that the use of RCS in constructed wetlands or filter beds is a promising solution for phosphorus removal via adsorption and precipitation mechanisms.

Removal of Cs and Sr Ions by Absorbent Immobilized Zeolite with PVA (제올라이트를 PVA로 고정화한 흡착제에 의한 Cs과 Sr 이온 제거)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.450-457
    • /
    • 2015
  • In this research a adsorbent, PVA-Zeolite bead, was prepared by immobilizing zeolite with PVA. The results of XRD and SEM analysis showed that the prepared PVA-Zeolite beads had porous structure and the zeolite particles were in mobilized within the internal matrix of the beads. The adsorption properties of Sr ion and Cs ion with the adsorbent were studied by different parameters such as effect of pH, adsorption rate, and adsorption isotherm. The adsorption of Sr ion and Cs ion reached equilibrium after 540 minutes. The adsorption kinetics of both ions by the PVA-Zeolite beads were fitted well by the pseudo-second-order model more than pseudo-first-order model. The equilibrium data fitted well with Langmuir isotherm model. The maximum adsorption capacities of Sr ion and Cs ion calculated from Langmuir isotherm model were 52.08 mg/g and 58.14 mg/g, respectively. The external mass transfer step was very fast compared to the intra-particle diffusion step in the adsorption process of Cs ion and Sr ion by the PVA-Zeolite beads. This result implied that the rate controlling step was the intra-particle diffusion step.

A Feasibility Study on the Development of Admixed Liner Using Gibbsite and Clay (Gibbsite 를 이용한 대체 차수재 개발 타당성 연구 - Batch Test를 통한 흡착실험을 중심으로 -)

  • 현재혁;이상현;이지훈
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.75-93
    • /
    • 1995
  • This study investigates the adsorption capacity of the gibbsite and the clay on the development of admixed liner. The gibbsite is produced as a by-product in the pretreatment process for cleaning and coloring of Alurninurn sash. From the study, following conclusions were obtained: 1) The adsorption of metals such as Cu(II), Cd(II), and Ni(II) and phenol on gibbsite and l:entonite was equilibrated rather quickly(12 ~48 hrs ). 2) The rate and extent of adsorption is a function of surface area the adsorbent having. 3) The Larigmuir isotherm is found to be more suitable than Freundlich isotherm for the adsorption analysis of heavy metals on gibbsite and bentonite. 4) In case of phenol, Freundlich isotherm, whose N value is close to 1, i.e., close to linear isotherm, is more fit to describe the adsorption on gibbsite and bentonite. 5) The amount of metals and phenol adsorbed is found to be in the following order : Adsorbent : $2{\mu}m-Al(OH)_3$ > Mixed Solid > $12{\mu}m-Al(OH)_3$ > Na-Bentonite > $30{\mu}m-Al(OH)_3$

  • PDF

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

Characteristics of Batch and Continuous Operation in Sr ion Removal from Aqueous Solution Using NaA Zeolite (NaA 형 제올라이트를 이용한 수중의 Sr 이온 제거에서 회분식 및 연속식 운전 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.505-512
    • /
    • 2017
  • The adsorption characteristics of Sr ion in aqueous solution was examined using zeolite NaA powder (Z-PA) and pellets (Z-BA). In batch experiment, the adsorption of Sr ions by Z-BA and Z-PA was well expressed by pseudo-second-order kinetic model than psedo-first-order kinetic model. Experimental isotherm results was well fitted to Langmuir isotherm model and the maximum adsorption capacities obtained from Langmuir isotherm model were 233.32 mg/g for Z-PA and 164.60 mg/g for Z-BA, respectively. The continuous experiment results showed that the total Sr ion uptake (q) increased, but the breakthrough time, effluent volume ($V_{eff}$) and total removal (R) of Sr ion decreased with the Sr ion concentration. The breakthrough curves obtained from the experiment was modeled by Thomas model.

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

Determination of Loxoprofen Adsorption Isotherms by Frontal Analysis and Pulse Input Method (Frontal Analysis와 Pulse Input Method를 이용한 Loxoprofen의 등온흡착식 결정)

  • Lee, Eun;Park, Joon-Sub;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.371-375
    • /
    • 2006
  • Frontal analysis(FA) and Pulsed input method(PIM) have been frequently utilized to measure isotherm of single solute, as well as non-competitive isotherms of two solutes in chromatography(1). FA and PIM were used in this study as complementary methods to measure adsorption isotherms of loxoprofen racemate in HPLC. Prior to FA and PIM experiments, measurements of loxoprofen solubility were made at hexane/ethanol=50/50, 80/20, 95/5(v/v) with acetic acid(0.5%) for adjusting pH. The last composition(95/5) of hexane/ethanol allows us to separate loxoprofen racemate into two forms(retentate, extract). PIM and FA were used to determine the isotherms of re-and ex-loxoprofen.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Equilibrium, Isotherm, Kinetic and Thermodynamic Studies for Adsorption of 7-Epi-10-deacetylpaclitaxel from Taxus chinensis on Sylopute (실로퓨트에 의한 Taxus chinensis 유래 7-에피-10-디아세틸파클리탁셀의 흡착에 대한 평형, 등온흡착식, 동역학 및 열역학적 특성)

  • Park, Sae-Hoon;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.113-121
    • /
    • 2020
  • In batch experiments, the adsorption of 7-epi-10-deacetylpaclitaxel was studied using Sylopute. Experimental equilibrium data were applied to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Among the four isotherm models tested, the Langmuir isotherm model gave the highest accuracy. The adsorption capacity was found to decrease with increases in temperature and the adsorption of 7-epi-10-deacetylpaclitaxel onto Sylopute was a favorable physical process. Adsorption kinetic data agreed very well with the pseudo-second-order kinetic model, while boundary layer diffusion and intraparticle diffusion did not play a key role in the adsorption process. The process of 7-epi-10-deacetylpaclitaxel adsorption onto Sylopute was exothermic and nonspontaneous. Also, the adsorption isosteric heat was independent of surface loading indicating an energetically homogeneous adsorbent.