• Title/Summary/Keyword: 흡입 유체

Search Result 212, Processing Time 0.034 seconds

NUMERICAL STUDY OF TURBULENT FLOW IN A INTAKE PART OF VACUUM CLEANER WITH ROLLING BRUSH (회전브러시가 장착된 진공청소기 흡입장치의 난류유동에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Turbulent flows in a intake part of vacuum cleaner are studied by RANS simulations. The governing equations are solved by the SIMPLE algorithm based on the finite volume method of the unstructured grid system. The predicted results show that the suction performance is closely related to the variation of flow structure in the intake part. In order to investigate for the cleaning of bedclothes and carpet without sticking, several design changes are applied. The introduction of a solid cylinder in the intake part changes vortical structures significantly. Based on this result, a new design with spiral brushes is proposed. The design shows a good behavior for the suction performance and the flow control.

A Two-Dimensional Numerical Analysis of the Unstart Process in an Inlet/Isolator Model (흡입구/격리부 모델의 Unstart 과정 2차원 수치 해석)

  • Shin, Hocheol;Park, Soohyung;Byun, Yunghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.341-345
    • /
    • 2017
  • In this study, the Inlet/Isolator model experiments performed at Texas University were performed by 2-dimensional RANS computerized analysis. First, supersonic flow conditions were analyzed and compared with experimental surface pressure results, and the flow structure was analyzed by confirming Mach number distribution and numerical shadowgraph. Then, the inlet unstart condition was given by changing the back pressure, and the URANS analysis was performed to confirm the progress of inlet unstart.

  • PDF

A noise reduction structure for vacuum cleaner (진공청소기의 소음저감구조)

  • 박성수;황진성;손진승;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.73-79
    • /
    • 1994
  • (1) 진공청소기의 소음은 팬모타의 회전에 기인하는 유체소음과 진동소음이 주류를 이루며, 여기에 공기의 흡입과 배출에 따른 유체소음등이 복합되어 나타난다. (2) 진공청소기의 소음특성은 각 소음원들의 특성에 따라 주파수대역을 구분할 수 있으며, 기계적 진동음인 500Hz부근에서 peak를 보인다. (3) 소음의 저감을 위하여는 기존에 정립되어 있는 흡음, 차음, 감쇠, 방진, 유압유속감소 등의 기술을 종합적으로 활용하여 제한된 공간내에서 효과를 극대화할 수 있는 구조개발이 필요하며 본 연구에 적용하였다. (4) 본 연구의 '정음유로구조'는 차음효과, 유로길이 증가에 의한 감쇠효과, 흡음효과를 극대화할 수 있는 구조이다. (5) 팬모타의 진동모드는 회전축을 중심으로 원운동을 하며, 진동량은 흡입구와 뒷쪽 베어링부위가 가장 작으므로 회전축에 가까운 곳을 지지하는 것이 방진에 유리하다. (6) 본 구조에서 사용된 케이싱은 484Hz의 고유진동수 성분을 가지며 이는 모타와 공진할 우려가 있다. 이에 공진주파수 성분의 진동량이 가장 작은 전면과 후면의 중앙부를 지지하여 진동을 줄일 수 있었다. (7) 본체소음의 전반적인 저감에 따라 흡입구 등에서 발생하는 공기마찰소음의 영향이 상대적으로 커지며, 따라서 흡입구의 유선형 설계 및 누설소음의 흡음, 차폐 등의 역할이 중요한 관리 요소로 된다.

  • PDF

Effect of the Suction Performance by the Air-Curtain Blowing around a Suction Duct (흡입관 주위에 형성된 공기차단막이 흡입성능에 미치는 영향)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.25-32
    • /
    • 2009
  • A study is conducted to improve the suction performance on suction devices which are used to remove polluted air generated by welding or machining process in a spacious working place of industry. Air-curtain is applied around the inlet of suction duct to interrupt the inflow of fresh air from the downstream region where is located opposite to the polluted air source. Two different air-curtain devices, such as a $45^{\circ}$ backward and a fully backward, are adopted. Suction region is experimentally investigated by measuring the suction velocities using a hot-wire anemometer. Contours of the suction velocity are compared with the computed results. The suction condition is selected to 110,000 Reynolds number which is widely used on typical suction devices, and a width of blowing passage for creating the air-curtain is chosen to 9.38% of the suction duct diameter. The experimental results show that the suction performance obtained with the $45^{\circ}$ backward air-curtain was better than that obtained with the fully backward air-curtain. On the suction duct using the $45^{\circ}$ backward air-curtain, the suction region estimated on basis of the 0.4m/sec is improved by 66% at the same input power.

A Study of Performance Analysis for a Double-Suction Centrifugal Pump (양쪽 흡입 원심펌프의 성능해석에 대한 연구)

  • Chung, Kyung-Nam;Park, Pyun-Goo;Cho, Hyun-Jun;Lee, Sang-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.7-15
    • /
    • 2001
  • Flow analysis was carried out for a double-suction centrifugal pump. Impeller-only models and a full pump model were used to simulate the velocity field and the pressure field of the pump. Heads and efficiencies were calculated with flow rates in order to obtain general performance of the pump. The calculation results were compared to the experimental data, and satisfactory results were obtained. Thus, it may be said that the CFD serves as a useful tool for pump designs.

  • PDF

Numerical Analysis of the Subsurface Vortices in the Pump Sump Models (펌프 흡입수조 모형시험에서의 수중와에 대한 유동해석)

  • Kim, Jin-Young;Chung, Kyung-Nam;Kim, Hyu-Gon;Kim, Young-Hak
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.593-597
    • /
    • 2005
  • In order to study the characteristics of the subsurface vortex the flow fields of the three pump sump models were analysed by the numerical simulation. The calculation results show that there are circulation flows in the pump sump model and maximum vorticity strength which make iso-surface from the wall to the pump inlet could be used for predicting the subsurface vortex generation. Also, the flow field for the sump model with anti-vortex devices simulated and the results shows that there is no vorticity value which make iso-surface from the sump wall to the pump inlet.

  • PDF

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(1) - Development of Optimization Algorithm and Techniques for Large-Scale and Highly Nonlinear Flow Problem (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(1) - 대용량, 비선헝 유체의 최적화를 위한 알고리즘 및 테크닉의 개발)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.661-669
    • /
    • 2007
  • Eyer since the Prandtl's experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been still used up to now. This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem by using step by step method in analysis and introducing SQP method in optimization. In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Study on Concept Design of Supersonic Inlet and Flow Control of Bleeding under Operating Condition (초음속 흡입구 개념 설계와 운영조건 내의 블리딩(bleeding) 유동제어 연구)

  • Choi, Jaehwan;Cheon, Somin;Choe, Yohan;Hong, Wooram;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1025-1031
    • /
    • 2012
  • The present paper deals with concept design of supersonic inlet based on compressible flow theory and flow control of bleeding in order to guarantee stability of supersonic inlet of ramjet engine in broad range of operating conditions. Shock instability, shock wave-boundary layer interaction and flow separation should be properly controlled to improve performance of the supersonic inlet. Considering shock strength, boundary layer and flow separation, the supersonic inlet is modified from the basic model which is designed under inviscid theory. Consequently, shock is stabilized, and required mass flow rate is obtained. Furthermore, bleeding is applied to the supersonic inlet to maintain performance in off-design conditions. Mass flow condition is adopted for modeling of bleeding effect, and performance of the supersonic inlet is evaluated by changing bleeding locations and numbers.

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.