• Title/Summary/Keyword: 흡입압력

Search Result 231, Processing Time 0.04 seconds

A Numerical Study on the Generation and Propagation of Intake Noise in the Reciprocating Engine (엔진 흡기계의 소음발생 및 전파에 관한 수치연구)

  • 김용석;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.65-70
    • /
    • 1996
  • 엔진소음을 소음특성에 따라 분류하면 공력소음(Aerodynamic Noise), 연소소음(Combustion Noise), 기계적인 소음(Mechanical Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise)으로 나눌 수 있으며 소음원의 종류에 따라 분류하면 배기계소음(Exhaust System Noise), 흡기계소음(Intake System Noise), 냉각계소음(Cooling System Noise), 엔진표면소음(Engine System Noise)등으로 분류할 수 있다. 이러한 여러소음중 엔진 내부의 유동에 의한 흡배기계통으로의 소음방출은 자동차 실 내외 소음의 중요한 문제로 대두되는데, 이를 줄이기 위해 그 동안 소음기 등의 서브시스템의 형태와 그 위치조정에 관한 연구가 수행되어 왔다. 그러나 이것이 비용 또는 성능에 영향을 미치므로 본질적인 소음원을 규명해 내는 것이 필요하게 되었다. 흡배기계의 소음은 엔진의 흡입, 배기행 정시 피스톤의 운동에 의해 팽창 및 압축파 형태의 압력파(pressure wave)로 발생하게 되고, 밸브근방에서는 유동의 박리(separation)에 의해 발생하게 된다. 소음기 등의 서브시스템에서도 유동의 박리에 의해 발생하게 되며 특히 배기행정시 발생하는 압력파는 비선형영역에 있게된다. 흡기소음은 배기에 비해 그 크기가 작아서 그동안 등한시 되어왔으나 이것이 소비자의 불평요인으로 작용하므로써 이에 대한 연구도 활발히 수행되어야 한다. Bender, Bramer[1]는 흡배기계 소음의 외부 방사에 관하여 전반적으로 기술하였고 Sierens등[2]은 흡기계에서 1차원 MOC(Method of Characteristics)방법으로 비정상 유동해석을 하고 실험결과와 비교하였다. J.S.Lamancusa 등[3]은 흡기 소음원을 실험을 통해 예측하였고, 흡기소음도 비선형 거동을 보인다고 밝혔다. Yositaka Nishio 등[4]은 새로운 흡기실험장치를 고안하여 공명기(resonator)의 위치 변화에 의한 저소음 흡기계를 설계 초기단계에서부터 적용하려 하였다. 일반적으로 흡배기계의 복잡한 형상 때문에 대부분 실험을 통해 문제를 해결하려 하였고, 수치해석은 피스톤의 운동을 배제한 단순화한 흡배기계의 정상상태 유동해석이 주를 이루어왔다. Taghaui and Dupont 등[5]은 KIVA코드를 사용하여 흡기포트와 연소실 그리고 밸브의 움직임을 동시에 고려한 수치해석을 도입하였다. 하지만 이들이 밸브의 운동을 고려하기 위해 사용한 이동격자는 격자점은 시간에 따라 변화하지만 그 격자의 수가 일정하게 유지되어 있어서 밸브의 완전개폐를 해석할 수가 없다. 강희정[6]은 단일 실린더와 단일 배기밸브를 갖는 문제로 단순화하여 피스톤과 밸브의 움직임을 고려하므로써 배기행정 후 소음이 어떻게 전파해 나가는가를 연구하였다. 본 연구에서도 최소밸브간격과 최대밸브간격 사이에서만 계산이 가능하나 흡기의 경우는 밸브가 닫힐 때 생기는 압력파가 중요하므로 실린더와 밸브사이에 벽면조건을 주어 밸브의 개폐를 모사하였다.

  • PDF

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

Surgical outcome of severe pulmonary arterial hypertension secondary to left-to-right shunt lesions (심한 폐동맥 고혈압을 동반한 좌우 단락 질환 환자의 수술 후 경과)

  • Lee, Cha Gon;Jeong, Su-In;Huh, June;Kang, I-Seok;Lee, Heung Jae;Yang, Ji-Hyuk;Jun, Tae Gook
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.195-202
    • /
    • 2010
  • Purpose : Despite recent advances in pulmonary hypertension management and surgery, appropriate guidelines remain to be developed for operability in congenital heart disease with pulmonary artery hypertension (PAH). Our aim was to evaluate clinical outcomes of patients with severe PAH who underwent surgical closure of left-to-right shunt lesions (LRSL) on the basis of pulmonary reactivity. Methods : We retrospectively reviewed 21 patients who underwent surgical closure of LRSL with severe PAH (${\geq}8$ Wood unit) from January 1995 to April 2009. The median age at operation was 26 years. Atrial septal defect, ventricular septal defect (VSD), VSD and patent ductus arteriosus (PDA), and PDA was present in 11, 4, 4, and 2 patients, respectively. Results : Operability was based on vasoreactivity of PAH. Of the 21 patients, 5 showed response to pulmonary vasodilator therapy and 8 showed vasoreactivity after balloon occlusion of defects. The remaining 8 patients were considered operable because of significant left-to-right shunt (Qp/Qs ${\geq}1.5$). Five patients underwent total closure of defects and 16 were left with small residual shunts. The median follow-up duration was 32 months. There was no significant postoperative mortality or morbidity. Systolic pulmonary artery pressure (PAP) decreased in all but 2 patients. All patients except 1 showed improvement of New York Heart Association functional class. Conclusion : Closure of LRSL in patients with severe PAH on the basis of pulmonary vasoreactivity seems reasonable. PAP and clinical symptoms improved in most patients. Further research is needed for the evaluation of long-term results.

Effect of Microwave Irradiation and Chemical Conditioning for Dewatering Characteristics of Sludge (슬러지의 탈수 특성에 대한 마이크로파와 약품개량의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Wang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.732-738
    • /
    • 2005
  • The purpose of this study is the presentation of the proper microwave treatment conditions by means of the investigation of the effect of microwave irradiation on the dewaterability and dryability of sludge. For the improving of dewatering efficiency of sludge using the microwave, the proper time of microwave irradiation is very important. The dewatering efficiency of thickening sludge conditioned by microwave irradiation for proper time was considerably improved with reducing of capillary suction time from 52.3 sec to 30.8 sec, and the sludge conditioned by microwave irradiation had contained the moisture of 81.4% after that pressure filtrationed. The result of drying characteristics of dewatered sludge using the microwave irradiation and furnace heating, for drying of sludge to moisture of below 55%, microwave irradiation time was required 3 min, whereas, furnace heating was required 40 min at $105^{\circ}C$, 20 min at $170^{\circ}C$ and 9 min at $300^{\circ}C$, respectively. We certified that the drying of dewatered sludge using the microwave irradiation was effectively reduction of moisture of sludge compare to traditional heating method.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

Supersonic Flow Air Data Acquisition Algorithm Using Total Pressure Sensors (전압력센서를 적용한 초고속 유동데이터 산출 알고리즘)

  • Choi, Jong-Ho;Lee, Jae-Yoon;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.60-65
    • /
    • 2011
  • The development of an air data acquisition algorithm has been described in the supersonic flow at the preliminary design stage with pressure data acquisition device composed of major three total pressure sensors and two static pressure sensors which are installed on the surface of a cone type supersonic inlet. Through this algorithm, Mach number, angle of attack and sideslip angle can be very easily derived with simple interpolation algorithm and predefined data tables. The available range of Mach number is 1.6 to 4.0, angle of attack, $-12^{\circ}$ to $12^{\circ}$ and sideslip angle, $-12^{\circ}$ to $12^{\circ}$. In preliminary design stage, the data tables applied to the developed algorithm are constructed with data driven by Taylor Maccoll equation. The present algorithm would be useful to get supersonic flow air data for the various aerial vehicles and their flight tests.

Supported Ionic Liquid Membrane Preparation for Carbon Dioxide Separation (이산화탄소 분리를 위한 이온성액체 지지분리막의 제조)

  • Choi, Mi Young;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.280-283
    • /
    • 2012
  • The study is aiming to prepare supported ionic liquid membranes for carbon dioxide separation efficiently. The ionic liquid, [bmim][${PF_6}^-$] (1-butyl-3-methyl-imidazolium hexafluorophosphate) was fixed in the pores of PVDF micro-filtration membrane with a nominal pore size 0.1 ${\mu}m$. The permeabilities of $N_2$, $H_2$ and $CO_2$ gases through the prepared ionic liquid membrane were 0.075, 0.203 and 1.380 GPU, respectively. The selectivities of $CO_2/N_2$, $H_2/N_2$ were 14.2 and 2.69, respectively. Also, the supported ionic liquid membrane could be operated stably up to 2.0 bar with the immobilization of ionic liquid in the pores.

The Effect of HHO Gas on the Performance of Industrial Diesel Engine Using Biodiesel Blended Fuel (흡기중의 HHO 가스 첨가가 바이오 디젤 혼합연료를 사용한 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Lee, Eun-June;Son, Kwon;Park, Sung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1022-1027
    • /
    • 2011
  • A diesel engine works in high compression ratio due to injection of diesel fuel after compression of air. Therefore the engine has a high thermal efficiency, while nitrogen oxide is produced a lot in high flame temperature regions. In order to solve the problem this study HHO gas is added into the intake air of the industrial diesel engine. The test conditions are loads of 0%, 50% and 100% and engine speeds of 700 to 1900 rpm. The results show the maximum torque and pressure is increased, fuel consumption, smoke and CO emissions are decreased and NOx emission is remained at same level.

Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV (PIV를 이용한 Weis-Fogh형 수차의 유동장 가시화)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle ${\alpha}=40^{\circ}$ and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

Shape Recovery Analyses of SMA Actuator-Activated Composite Shells Considering 3-D SMA Material Behaviors (3차원 거동이 고려된 형상기억합금 작동기 부착 복합재 쉘의 변형해석)

  • Kim, Cheol;Lee, Seong Hwan;Jo, Maeng Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.44-52
    • /
    • 2003
  • Shape memory alloys (SMA) are often used in smart structures as active components. Their ability to provide large recovery forces and displacements has been useful in many applications, including devices for artificial muscles, active structural acoustic control, and shape control. Based on the 3-dimensional SMA constitutive equation in this paper, the radial displacement control of externally pressurized circular and semicircular composite cylinders under external pressure with a thin SMA layer bonded on its inner surface or inserted between composite layers in investigated using 3-dimensional finite element analysis. Upon actuation through resistive heating, SMAs start to transform from martensitic into austenitic state, simultaneously recover the prestrain, and thus cause the composite cylinders to go back to their original shapes of the cylinder cross-sections.