• Title/Summary/Keyword: 흡습모델

Search Result 22, Processing Time 0.027 seconds

Absorption Characteristics of and a Prediction Model for Spray-Dried Protein-bound Polysaccharide Powders isolated from Agaricus blazei Murill (아가리쿠스버섯에서 분리한 단백다당류 분말의 흡습특성과 예측모델)

  • Hong, Joo-Heon;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.719-725
    • /
    • 2009
  • We investigated the absorption characteristics of protein-bound polysaccharide powders of various molecular weights isolated from the mushroom Agaricus blazei Murill. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than did the BET equation. The higher the water activity, the lower the isosteric heat of sorption. The fitness of the isotherm curve was shown to be in the order of the Khun, Oswin, Caurie and Henderson models. The prediction model equations for moisture content were established by use of ln(time), water activity, and temperature.

Moisture Sorption Characteristics and a Prediction Model of Anchovy Powder with Particle Size (입자크기에 따른 분말멸치의 흡습특성 및 예측모델)

  • Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.513-518
    • /
    • 2010
  • This study was carried out to estimate the moisture sorption characteristics and prediction model of anchovy powders with different particle size as above 80 mesh, 80-60 mesh and 40-60 mesh. The equilibrium moisture content had higher values at lower storage temperatures, and higher water activity. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than that of BET equation. The estimated monolayer moisture content was 0.024-0.052 g $H_2O/g$ dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. The fitness of the isotherm curve was shown to be in the order of Khun, Halsey, Caurie and Oswin model. The prediction model equations for the moisture content were established by ln(time), water activity, and temperature, respectively. The model equation will be helpful for future work on drying and storage of anchovy powder.

Absorption Characteristics of Green Tea Powder as Influenced by Particle Size (입자크기에 따른 분말 녹차의 흡습특성)

  • Youn, Kwang-Sup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1720-1725
    • /
    • 2004
  • Absorption characteristics of green tea powder were investigated. The monolayer moisture content determined by GAB equation was 0.024~0.052 g $H_2O$/g dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. Among models applied for predicting equilibrium moisture content, Halsey model was the best fit model for green tea powders, showing the lowest prediction deviation of 2.1~4.0%. The prediction model equations for the water activity was established as function of relative humidity, time and temperature. The model equation will be helpful for future work on drying and storage of green tea powder.

Absorption Characteristics and Prediction Model of Ginger Powder by Different Drying Methods (건조방법에 따른 생강분말의 흡습특성과 예측모델에 관한 연구)

  • Shin, Hae-Kyoung;Hwang, Sung-Hee;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • Absorption characteristics of hot air-. vacuum-, and freeze-dried ginger powder were investigated. Monolayer moisture content as determined by GAB equation was $0.257{\sim}0.540\;H_2O/g$, showing higher significance than BET equation. Absorption enthalpy was calculated based on different drying methods and water activities. Absorption energy decreased with increasing water activity but was not affected by drying method. Isotherm curves showed a typical sigmoid form. Among models applied for predicting equilibrium moisture content, Caurie model was the best fit model for ginger powder, showing the lowest prediction deviation of $1.2{\sim}5.4%$, followed by Henderson then Bradley models. The prediction model equations for the moisture content were established by in(time), water activity, and temperature.

Evaluation of Moisture Sorption Characteristics in Polymer Material (고분자 소재에서 흡습 특성의 평가)

  • Park, Hee-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1297-1303
    • /
    • 2012
  • In this paper, the standard procedures for measuring the moisture sorption properties of thin polymeric materials such as polyethylene terephthalate (PET) by using the thermo-gravimetric method to characterize the moisture diffusion in the polymer are presented, and the sorption properties are quantified. The moisture diffusivity and solubility are characterized to investigate the effect of temperature and humidity on the moisture sorption properties according to the Arrhenius equation. The validation of the obtained sorption properties using thermogravimetry is discussed with the measured permeability based on Fickian diffusion. The nonlinear behavior of the concentration dependent moisture diffusion is investigated experimentally, and the nonlinearity is characterized numerically for the case of having an interface with an inorganic material such as a metal. The Fickian/Non-Fickian model based on the obtained moisture sorption properties is compared and discussed.

Absorption Characteristics of Soybean curd Powder by Drying Methods (건조방법에 따른 건조분말두부의 흡습특성)

  • Kim Jin-Sung;Kim Jun-Han;Ha Young-Sun
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The absorption characteristics and their physical properties of hot air, vacuum and freeze dried soybean curd powder were investigated. Absorption conditions were at 5, 15, and 25 t with $0.11\~0.93$ water activities. Equilibrium moisture content and the monolayer moisture content determined by prediction models showed highest value in the freeze dried soybean curd powder due to porous structure. Absorption energy decreased with increasing water activity was not affected by drying method. In the comparisons of the isothermal absorption models, Oswin model generally was the best fit model for isothermal adsorption of soybean curd powder.

Development Cooling and Dehumidifying System for Greenhouse using Hygroscopic properties of Lithium Bromide Solution (리튬브로마이드 수용액의 흡습성질을 이용한 온실 냉방 및 제습 시스템 개발)

  • Cho, La Hoon;Oh, Kwang Cheol;Lee, Sang Yeol;Joo, Sang Yeon;Park, Sun Yong;Lee, Seo Hyeon;Jeong, In Seon;Lee, Chung Geon;Kim, Dae Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.79-79
    • /
    • 2017
  • 국내 여름철의 고온다습한 기후환경으로 인하여 온실 내부의 냉방 및 제습이 필수적인데, 온실 냉방 방식 중 증발냉각 시스템이 가장 효율이 높다고 알려져 있다. 하지만 증발냉각 시스템은 건조한 기후 지역에서 발달한 방식으로, 작물의 증산작용으로 인한 온실 내부 습도 상승에 따른 문제점이 발생되어 다습한 여름철 국내 기후에는 반드시 냉각과 제습이 동시에 필요하다. 따라서 증발냉각 방식 중 Fan and Pad 방식과 리튬브로마이드 수용액을 이용한 온실 냉방 및 제습을 위한 복합시스템에 관한 연구가 진행중이다. 현재 리튬브로마이드 수용액 제습 시 발생되는 발열량과 수용액의 무게변화와 같은 수용액의 흡습성질 대한 정확한 지표가 나타나 있지 않다. 이에 연구를 진행하기에 앞서 리튬브로마이드 흡습성질에 관한 데이터 자료가 필요하다고 판단되어 기초실험을 진행하였고, 본 연구에서는 Pilot Scale의 재생 순환시스템을 통해 리튬브로마이드 수용액의 흡습성질을 이용한 재사용 방안을 제시하였고, 시스템 내에서 외부투입공기와 작동유체의 흡습성질에 의한 반응 전후 온도변화 예측 모델을 수립하였다. 따라서 본 연구를 통해 리튬브로마이드 수용액의 흡습성질을 분석하고, 이를 이 용한 재생 순환 시스템에 관한 연구를 진행할 예정이다.

  • PDF

Prognostics for Stator Windings of Water-Cooled Generator Against Water Absorption (수냉식 발전기 고정자 권선의 흡습 건전성 예지)

  • Jang, Beom Chan;Youn, Byeng D.;Kim, Hee Soo;Bae, Yong Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.625-629
    • /
    • 2015
  • In this study, we develop a prognostic method of assessing the stator windings of power generators against water absorption through statistical data analysis and degradation modeling. The 42 windings of the generator are divided into two groups: the absorption and normal groups. A degradation model of a winding is constructed using Fick's second law to predict the level of absorption. By analyzing data from the normal group, we can determine the distribution of the data of normal windings. The health index of a winding is estimated using the directional Mahalanobis distance (DMD) method. Finally, the probability distributions of the failure time of the windings are determined.

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy (열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사)

  • Kwon, Sunyong;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.

Adsorption Characteristics of Short Grain Rough Rice (단립종 벼의 수분흡습특성)

  • 김종순;고학균;송대빈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.465-472
    • /
    • 1998
  • In this study short gain rough rice(Chu-cheong) with initial moisture content of around 12%(w.b.) was exposed to 3 levels of relative humidity(70, 80 and 90%) and 3 levels of temperature(20, 25 and 3$0^{\circ}C$) of the air, in order to evaluate the adsorption characteristics of rough rice and the rate of cracked kernels which will serve as the basic data when developing the quality adjusting equipment. The result showed that the moisture content of rough rice increased rapidly during the early stages of moisture adsorption like other grains, and at least 70% of the adsorption occurred within the first 24 hours of exposure to the humid environment. Adsorption rate was more related to relative humidity than the temperature of air stream, and the higher the relative humidity, the higher the adsorption rate. And the Page's equation predicted best the adsorption process of this study. Experimental results for the crack generation during the adsorption process showed that the higher the relative humidity the more the cracked kernels, and that the temperature had little effect. An empirical equation was developed to predict the crack ratio for the conditions of this study, and Nishiyama model predicted better the crack generation than Hoerl model.

  • PDF