DOI QR코드

DOI QR Code

Absorption Characteristics of Green Tea Powder as Influenced by Particle Size

입자크기에 따른 분말 녹차의 흡습특성

  • 윤광섭 (대구가톨릭대학교 식품산업학부)
  • Published : 2004.12.01

Abstract

Absorption characteristics of green tea powder were investigated. The monolayer moisture content determined by GAB equation was 0.024~0.052 g $H_2O$/g dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. Among models applied for predicting equilibrium moisture content, Halsey model was the best fit model for green tea powders, showing the lowest prediction deviation of 2.1~4.0%. The prediction model equations for the water activity was established as function of relative humidity, time and temperature. The model equation will be helpful for future work on drying and storage of green tea powder.

분말녹차의 저장안정성을 알아보고자 200 mesh이상,200∼140 mesh, 100∼140 mesh로 입자크기에 따라 분급하여 흡습특성을 조사하고 수분활성도 예측 모델식을 수립하였다. 단분자층 수분함량은 BET식보다 GAB식이 더 높은 유의성을 보여 전구간에서 0.99∼1.00으로 높은 적합도를 보였으며 그 함량은 0.024∼0.0529 $H_2O$/g dry solid로 계산되었다. 평형수분함량은 입자크기에 작을수록, 낮은 온도에서 높은 평형수분함량을 나타내었다. 입자크기에 따른 흡습엔탈피도 큰 차이가 없었으나 수분활성도가 증가함에 따라 낮은 흡습에너지를 보였다. 등온흡습곡선의 적합도는 Halsey 모델이 $R^2$가 0.95 이상으로 높은 적합도를 나타내었고 Oswin, Khun, Caurie모델의 순으로 높은 적합도를 나타내었으며, 편차도 Halsey모델이 2.1∼4.0%로 가장 낮게 나타나 분말 녹차의 흡습특성에 적용가능함을 보였다. 수분활성도 예측모델의 수립을 위해 각 독립변수의 최적 함수로 시간은 ln 함수, 상대습도와 온도는 일차식을 선정하였으며 수분활성도 예측모델식은 입자의 크기에 관계없이 상대습도와 시간으로 수립한 모델식의 적합도가 적절한 것으로 나타났다.

Keywords

References

  1. Lee KCR. 2004. A study on the life style of green tea. J Kor Tea Soc 10: 7-24
  2. Park JH, Kim YO, Kug YI, Cho DB, Choi HK. 2003. Effects of green tea powder on noodle properties. J Korean Soc Food Sci Nutr 32: 1021-1025 https://doi.org/10.3746/jkfn.2003.32.7.1021
  3. Kim KS, Kouzkue N, Han JS. 2004. Comparison of the ingredients at powdered green teas commercialized Korea and Japan. Korean J Food Culture 19: 177-183
  4. 식품공전. 2002. 한국식품공업협회. 문영사, 서울. p 248-249
  5. Diosady LL, Rizvi SSH, Cai W, Jagdeo DJ. 1996. Moisture sorption isotherms of canola meals and applications to packaging. J Food Sci 61: 204-208 https://doi.org/10.1111/j.1365-2621.1996.tb14760.x
  6. Song JC, Park HJ. 1995. Physical, functional, textural and rheological properties of foods. Ulsan Univ. Press, Ulsan. p 216-225
  7. Kim DW. 1992. A study on the flow ability and absorption of model food powders. PhD Dissertation. Chungnam Univ., Daejeon
  8. Basunia MA, Abe T. 2005. Adsorption isotherms of barley at low and high temperature. J Food Engineering 66: 129- 136 https://doi.org/10.1016/j.jfoodeng.2004.03.006
  9. Al-Muhtaseb AH, McMinn WAM, Magee TRA. 2004. Water sorption isotherms of starch powders Part Ⅰ. Mathematical description of experimental data. J Food Engineering 61: 297-307
  10. Jung SH, Chang KS, Park YD. 1993. Prediction of water activity for gelatinized model foods. Korean J Food Sci Technol 25: 94-97
  11. Youn KS. 1989. Sorption characteristics and moisture content prediction model of coffee with relative humidity and temperature. MS Thesis. Kyungpook Univ., Daegu
  12. Apostolopoulos D, Gilbert SG. 1990. Water sorption of coffee solubles by frontal inverse gas chromatography: thermodynamic considerations. J Food Sci 55: 475-477 https://doi.org/10.1111/j.1365-2621.1990.tb06790.x
  13. Kim HK, Jo KS, Hawer WD, Shin DH. 1988. Browning and sorption characteristics of garlic powder with relative humidity and storage temperature. Korean J Food Sci Technol 20: 399-404
  14. Sukumar D, Hermavathy J, Bhat KK. 2002. Moisture sorption studies on onion powder. Food Chem 78: 479-482 https://doi.org/10.1016/S0308-8146(02)00161-9
  15. Cadden AM. 1987. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52: 1595-1599 https://doi.org/10.1111/j.1365-2621.1987.tb05886.x
  16. Bonquet R, Chrife J, Igleasis HA. 1978. Equations for fitting water sorption isotherms of foods; Ⅱ. Evaluation of various two-parameter model. J Food Technol 13: 319-322 https://doi.org/10.1111/j.1365-2621.1978.tb00809.x
  17. Bonquet R, Chrife J, Igleasis HA. 1978. Equations for fitting water sorption isotherms of foods; I. A review. J Food Technol 13: 159-163 https://doi.org/10.1111/j.1365-2621.1978.tb00792.x

Cited by

  1. Moisture Sorption Isotherms of Domestic and Imported Milk Powders and Their Calculated Heat of Sorption vol.26, pp.11, 2008, https://doi.org/10.1080/07373930802333577
  2. Evaluation of microbial quality of dried foods stored at different relative humidity and temperature, and effect of packaging methods vol.38, pp.2, 2018, https://doi.org/10.1111/jfs.12433
  3. 상대습도 및 저장 온도가 분말녹차의 품질에 미치는 영향 vol.38, pp.1, 2004, https://doi.org/10.3746/jkfn.2009.38.1.083