• Title/Summary/Keyword: 흡수 경계조건

Search Result 90, Processing Time 0.025 seconds

A Study on the Microstrip Patch Antenna Using FDTD Method (유한 차분 시간법을 이용한 마이크로스트립 패치 안테나에 관한 연구)

  • 장용웅;박상규;신철재
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a microstrip patch antenna was analyzed by using FDTD method. Firstly, the electric field in the microstrip patch antenna was obtained by approximating a Maxwell's equation to a finite difference equation by means of Yee's algorithm. In this case, Mur's 1st approximation and dispersive boundary condition(BBC) were applied to an absorbing boundary condition. We also analyzed a single microstrip patch antenna by using the FDTD method, then calculating the propagative process in the wave of a return loss. Also, as the result that FDTD was applied to 2-array antenna designed to increase the gain of antenna, the measured results was in relatively good accordance with the values calculated by the FDTD method. The calculated impedance, return loss and VSWR were comparatively good. And these results were In relatively good accordance with the measured values.

  • PDF

Wave Simulation for the Optimum Design of Jangjeon Harbour (장전항 최적 설계를 위한 정온도 해석)

  • Hong Keyyong;Yang Chankyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • Wave distribution in Jangjeon Harbour is numerically simulated for an optimum design of the harbour facilities. A deep-water design wave is estimated based on stochastic extreme wave analysis of wind data in the vicinity of the harbour, and it is applied to the boundary condition at open sea. Boussinesq wave theory that includes effects of frequency dispersion and nonlinearity is employed for the wave simulation. The porosity and sponge layer are adapted at beach to depict partial reflection and complete absorption of waves, respectively. The design wave for breakwater is computed in global domain with coarse grids and the wave distribution inside of wharf is simulated in local domain with fine grids.

  • PDF

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis (비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가)

  • Lee, Eun-Haeng;Kim, Jae-Min;Jung, Du-Ri;Joo, Kwang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.499-512
    • /
    • 2016
  • The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

CdTe기반의 엑스선 검출기의 표면 구조에 따른 박막의 전기적 특성평가

  • Kim, Dae-Guk;Sin, Jeong-Uk;Lee, Yeong-Gyu;Lee, Ji-Yun;No, Seong-Jin;Park, Seong-Gwang;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.432-432
    • /
    • 2013
  • 현대에 이르러 직접방식 엑스선 검출기에서는 기존의 a-Se을 주로 이용하였지만, 고전압 인가에 따른 회로 손상과 짧은 수명, 그리고 누설전류에 따른 안전의 문제 등으로 낮은 에너지 밴드갭과 높은 흡수효율, 비저항 등에 의거한 다양한 대체 물질에 대한 연구가 활발하게 이루어져가고 있다. 본 논문에서는 직접방식 엑스선 검출물질로 전기이동도와 흡수효율이 뛰어나고, 밴드갭이 낮아 태양전지분야 뿐만 아니라 최근 엑스선 검출물질로 각광받고 있는 CdTe를 선정하였다. 연구의 목적은 PVD (Physical Vapor Deposition)방식의 CdTe 검출 물질의 제작과정에서 CdTe가 기화되어 하부전극 기판에 증착될 시, 하부전극 기판 온도에 따른 CdTe의 박막형성과 전기적 측정을 실시하여 그에 따른 최적의 증착조건을 선정하는 것이다. 하부전극 기판으로는 Au/glass를 사용하였으며 증착 시, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$로 나누어 특성을 평가하였다. 시료는 파우더형태의 다결정CdTe를 120 g를 사용하여 증착완료 시, 약 $100{\mu}m$의 박막두께를 구현하였다. PVD증착의 조건으로는 Mo재질의 보트를 사용하였으며, 증착 시 진공도는 $5{\times}10^{-6}$ Torr, 보트온도는 약 $350^{\circ}C$ 소요시간은 5시간이었다. 증착이 완료된 CdTe의 표면구조와 전기적 특성평가를 위해 SEM촬영을 실시하였고, 전기적 특성 평가를 위해 CdTe표면에 Au를 PVD방식으로 증착하였다. 실험 결과 SEM촬영을 이용한 표면특성에서는 하부전극 기판의 온도가 높아질수록 표면 결정입자가 증가하는 것을 확인할 수 있었으며, 전기적 특성에서도 하부전극 기판의 온도가 증가할수록 RQA-5 조건의 70 kVp, 100 mA, 0.03 sec 엑스선에 대한 우수한 민감도와 암전류 값을 확인하였다. 이러한 결과는 증착과정에서 온도에 따른 다결정 CdTe의 표면결정 크기 증가는 동일한 면적에서 표면결정 수의 감소를 뜻한다. 이는 결정간의 경계에서 트랩 되어지는 전자가 감소하고, 전자의 이동도 또한 높은 효율을 나타냄을 확인할 수 있었다. 따라서 본 연구를 통하여 CdTe기반의 직접방식 엑스선 검출기 제작과정에서 증착 시 하부전극기판 온도가 증가할수록 결정의 크기가 증가하여 최적의 전기적 특성을 나타냄을 검증할 수 있었다.

  • PDF

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF

A Study on Fracture Characteristic of Aluminum Foam by Thickness (두께에 따른 알루미늄 폼의 파괴 특성에 관한 연구)

  • Gao, Teng;Cho, Jae Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.971-977
    • /
    • 2015
  • Because foam metal has the excellent physical characteristics and mechanical performance, they are applied extensively into a lot of advanced technology areas. The aluminum foam with closed cell is one of the foam metals. It is applied widely into automobile and airplane because of the excellent absorption performance of impact energy. In this study, the mechanical characteristics by thickness was analyzed through the impact experiment of closed-cell aluminum foam, and the simulation analysis was performed for the verification. As the simulation analysis method, a finite-element analysis was carried under the same boundary conditions as the experiment by using ANSYS. By comparing with the results of experiment and simulation, it was thought that the case of thickness of 20mm was the most efficient of among the cases of thicknesses of 10mm, 20mm and 30mm. At the case of thickness of 20mm, the absorption energy by comparing with the specimen thickness is shown to become the most among three models. By using the result of this study, it is thought that it can apply the material necessary to develop the mechanical structure with aluminum foam.

Analysis of heat and mass transfer in a vertical tube absorber cooled by air (공랭형 수직원관 흡수기에서의 열 및 물질전달 해석)

  • Kim, Seon-Chang;O, Myeong-Do;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.

Numerical Analysis of Wave Agitations in Arbitrary Shaped Harbors by Hybrid Element Method (복합요소법을 이용한 항내 파낭 응답 수치해석)

  • 정원무;편종근;정신택;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1992
  • A numerical model using Hybrid Element Method(HEM) is presented for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident short-period waves. A linear mild-slope equation including bottom friction is used as the governing equation and a partial absorbing boundary condition is used on solid boundaries. Functional derived in the present paper is based on the Chen and Mei(1974)'s concept which uses finite element net in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equations are solved using the Gaussian Elimination Method. The model appears to be reasonably good from the comparison of numerical calculation with hydraulic experimental results of short-wave diffraction through a breakwater gap(Pos and Kilner, 1987). The problem of requring large computational memory could be overcome using 8-noded isoparametric elements.

  • PDF

Characteristics of Harbor Resonance in Donghae Harbor (Part 2. Numerical Calculation) (동해항(東海港)의 부진동(副振動) 특성(特性)(2. 수치계산(數値計算)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1993
  • A numerical model has been used for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident waves. Based on linear wave theory a mild-slope equation has been used. A partial absorbing boundary condition has been used on solid boundary. Functional has been derived following Chen and Mei(l974)'s technique based on Hybrid Element Method which uses finite discretisation in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equation has been solved using the Gaussian Elimination Method. Helmholtz natural period and second peak period of seiche in Donghae Harbor coincide very well with the results from numerical calculation. Computed amplification factors show good agreement, especially when the reflection coefficient on solid boundary is 0.99, with those of measurements.

  • PDF

The Detection Method of a Target Position above a Ground Medium using the Buried Antenna (지하 매설 안테나를 이용한 지상 표적의 위치파악 기법)

  • 조정식;김채영;이승학;정종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.521-531
    • /
    • 2001
  • This paper presents the extraction scheme of the scattered waves by a target above the ground using the buried antenna in a lossy and dispersive medium. The half wave dipole antennas are used to transmit and to receive a signal. The transmission line model as a feeding model is considered to take into account the effect of transmission line in a real system. The ground is modeled by the 2nd order Debye approximation with the dispersion and loss. PLRC algorithm and DPML as absorbing boundary condition are utilized to apply the 2nd order Debye approximation to FDTD. To extract the scattered wave, in addition, we employed the delay time extraction algorithm. The simulations are conducted to observe the variation of magnitude in scattered wave and detection of target position according to the change of moisture content of the lossy medium.

  • PDF