• 제목/요약/키워드: 흡수식 냉동 사이클

검색결과 17건 처리시간 0.019초

신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석 (Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution)

  • 권오경;윤재호;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

흡수식 냉동기 고효율화를 위한 사이클 설계 (The study of High Efficiency Cycle Characteristics of the absorption Chiller)

  • 박찬우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.534-539
    • /
    • 2007
  • The objectives of the present work is to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, Solution heat exchangers(LSX, HSX) are a most effective element for the COP than the others. In spite of the poor contribution to COP, SCA make a rule to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio are varied with the relative size of RSX and LSX.

  • PDF

흡수식 냉동기 고효율화를 위한 사이클 설계 (The Study on High Efficiency Cycle Characteristics of the Absorption Chiller)

  • 박찬우
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.662-668
    • /
    • 2008
  • The objectives of the present work are to investigate the influence of the solution cooled absorber(SCA), refrigerant drain heat exchanger(RSX), exhaust gas/solution heat exchanger(ESX) and high efficiency solution heat exchanger on COP for a double-effect series-flow absorption chiller. A simulation program has been prepared for the cycle analysis of absorption chillers. As a result, solution heat exchangers(LSX, HSX) are the most effective element for the COP than the others. In spite of the poor contribution to COP, SCA plays an important role to reduce the crystallization phenomena of LiBr solution at solution heat exchanger. And the optimum solution split ratio varies with the relative size of RSX and LSX.

Revised VX흡수식 냉동사이클의수치 해석 (A Numerical Analysis of a Revised VX Absorption Cooling Cycle)

  • 장원영;정은수;김병주
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.505-513
    • /
    • 2001
  • A revised VX cycle using ammonia/water as the working fluid is a cycle which is suitable to produce cooling utilizing low temperature hat sources. The cycle was analyzed numerically to investigate the effects of the design and operating conditions on the performance. It was shown that both COP and cooling capacity were significantly influenced by the performance of he rectifier. Insufficient UA of the rectifier reduced both ammonia mass fraction and mass flow rate of the vapor entering the condenser, which produced cooling effect in the evaporator. As the temperature and the mass flow rate of the heat source increased, both COP and exergetic efficiency decreased due to the irreversibilities produced in heat exchangers, but cooling capacity did not vary much. Cooling capacity increased significantly as the coolant temperature decreased, although COP and exergetic efficiency remained nearly constant.

  • PDF

吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구 (A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle)

  • 박종구;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.77-86
    • /
    • 1992
  • 본 연구에서는 사이클은 터빈 출구로 부터 배출되는 폐열을 최대한 회수하여 얻은 증기를 연소기내에 분사시킴으로써 부가적인 압축기 및 비출력의 상향을 기할수 있다.아울러 폐열이용 암모니아 흡수기 냉동기를 구동하여 압축기 입구 온도를 낮 춤에 의해 열효율 및 비출력의 증대는 물론 대기온도 변화에 따른 기관 성능의 변동을 감소시킬 수 있다.

알코올 흡수식 열펌프의 난방성능 예측 (Simulation of Alcohol Absorption Heat Pumps for Heating Performance)

  • 김동선
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.269-276
    • /
    • 2015
  • Single-effect $CH_3OH-LiI-ZnBr_2$ and $C_2H_5OH-LiI$ absorption heat pumps are simulated to evaluate feasibility as heating device. These systems are predicted to give higher heating COPs in wide operating ranges compared to conventional systems. Among the two systems, the $C_2H_5OH-LiI$ system is found to be more advantageous for operating in extremely cold weather due to the large solubility of Lil in $C_2H_5OH$.

이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발 (Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems)

  • 윤상국
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.