• Title/Summary/Keyword: 흡수성 콜라겐 막

Search Result 4, Processing Time 0.02 seconds

Comparative study on absorbable periodontal tissue regeneration barrier membranes (흡수성 치주조직 재생 차폐막에 대한 비교연구)

  • Youngchae Cho;Dayeon Jeong;Deuk Yong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Absorbable periodontal tissue regeneration barrier membranes (total 6; domestic 4; import 2) were comparatively analyzed. In the case of the xenograft barrier membrane, the collagen product had excellent tensile strength but low strain, and the porcine pericardial membrane had good mechanical properties, but its thickness was too thick to control. The synthetic PLLA membrane manufactured by the electrospinning had a relatively low water absorption capacity. However, the hybrid barrier membrane was able to control mechanical properties and biocompatibility through proper mixing of synthetic polymer and natural polymer. DA02 (PLLA/gelatin), a newly developed hybrid absorbable periodontal tissue regeneration membrane that is entirely dependent on imports, can be applied to an absorbable periodontal tissue regeneration barrier membrane due to suitable mechanical properties and biocompatibility.

Clinical Effect of Guide Bone Regeneration of Mandibular Nonunion in a Geriatric Dog (노령견의 하악골절 불유합 1례에서 골유도재생술의 임상적 효과)

  • Kim, Se-Eun;Shim, Kyung-Mi;Bae, Chun-Sik;Choi, Seok-Hwa;Jeong, Soon-Jeong;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.30 no.2
    • /
    • pp.127-130
    • /
    • 2013
  • A 13-year-old, 4.2 kg female poodle was referred for failure of first bilateral mandibular surgery at a local animal hospital after pathologic fracture. Surgery was performed with 2.0-mm miniplates/screws and porcine cancellous bone grafts. In addition, because of the large size of the right segmental defect, a barrier absorbable membrane was employed for guide bone regeneration on right mandible. After surgery, follow-ups performed at 1 day, 1, 4, 8, and 12 weeks; there were no signs of dental malocclusion, nonunion or soft tissue infection. However, a 1-year long-term follow-up showed nonunion in the left mandibular fracture site for which a collagen membrane had not been used. It is considered that use of porcine bone graft with barrier absorbable membrane may be effective for the repair of mandibular nonunion in a geriatric dog.

Preparation and Properties of Collagen-Liposome using Hydrogenated Phosphatidylcholine (수첨 포스파티딜콜린을 이용한 콜라겐 리포좀의 제조 및 특성)

  • Choi, Young-Won;Jang, Boo-Sik;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.295-301
    • /
    • 2012
  • The collagen-liposomes were prepared with hydrogenated phosphatidylcholine and by solvent injection method for maximum protection and stable absorption of collagen into the body. Cholesterol was added to phosphatidylcholine to increase the stability of liposome membrane. The mixture was dissolved in ethanol and propylene glycol and PBS Buffer was used to Stabilize ions. The properties collagen-liposome were analyzed by DLS, SEM and POM.

Absorbable Guided Bone Regeneration Membrane Fabricated from Dehydrothermal Treated Porcine Collagen (Dehydrothermal Treatment로 제작한 흡수성 콜라겐 골유도재생술 차단막)

  • Pang, Kang-Mi;Choung, Han-Wool;Kim, Sung-Po;Yang, Eun-Kyung;Kim, Ki-Ho;Kim, Soung-Min;Kim, Myung-Jin;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 2011
  • Purpose: Collagen membranes are used extensively as bioabsorbable barriers in guided bone regeneration. However, collagen has different effects on tissue restoration depending on the type, structure, degree of cross-linking and chemical treatment. The purpose of this study was to evaluate the inflammatory reaction, bone formation, and degradation of dehydrothermal treated porcine type I atelocollagen (CollaGuide$^{(R)}$) compared to of the non-crosslinked porcine type I, III collagen (BioGide$^{(R)}$) and the glutaldehyde cross-linked bovine type I collagen (BioMend$^{(R)}$) in surgically created bone defects in rat mandible. Methods: Bone defect model was based upon 3 mm sized full-thickness transcortical bone defects in the mandibular ramus of Sprague-Dawley rats. The defects were covered bucolingually with CollaGuide$^{(R)}$, BioMend$^{(R)}$, or BioGide$^{(R)}$ (n=12). For control, the defects were not covered by any membrane. Lymphocyte, multinucleated giant cell infiltration, bone formation over the defect area and membrane absorption were evaluated at 4 weeks postimplantation. For comparison of the membrane effect over the bone augmentation, rats received a bone graft plus different covering of membrane. A $3{\times}4$ mm sized block graft was harvested from the mandibular angle and was laid and stabilized with a microscrew on the naturally existing curvature of mandibular inferior border. After 10 weeks postimplantation, same histologic analysis were done. Results: In the defect model at 4 weeks post-implantation, the amount of new bone formed in defects was similar for all types of membrane. Bio-Gide$^{(R)}$ membranes induced significantly greater inflammatory response and membrane resorption than other two membranes; characterized by lymphocytes and multinucleated giant cells. At 10 weeks postoperatively, all membranes were completely resorbed. Conclusion: Dehydrotheramal treated cross-linked collagen was safe and effective in guiding bone regeneration in alveolar ridge defects and bone augmentation in rats, similar to BioGide$^{(R)}$ and BioMend$^{(R)}$, thus, could be clinically useful.