• Title/Summary/Keyword: 흡수선량 평가

Search Result 208, Processing Time 0.023 seconds

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

Radiation Absorbed Dose Measurement after I-131 Metaiodobenzylguanidine Treatment in a patient with Pheochromycytoma (갈색세포종 환자에서 Medical Internal Radiation Dose법을 이용한 I-131 Metaiodobenzylguanidine 치료 후 흡수선량 평가)

  • Yang, Weon-Il;Kim, Byeung-Il;Lee, Jae-Sung;Lee, Jung-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Sung-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.4
    • /
    • pp.422-429
    • /
    • 1999
  • Purpose: The measurement of radiation absorbed dose is useful to predict the response after I-131 labeled metaiodobenzylguanidine (MIBG) therapy and determine therapy dose in patients with unresectable or malignant pheochromocytoma. We estimated the absorbed dose in tumor tissue after high dose I-131 MIBG in a patient with pheochromocytoma using a gamma camera and Medical Internal Radiation Dose (MIRD) formula. Materials and Methods: A 64-year old female patient with pheochromocytoma who had multiple metastases of mediastinum, right kidney and periaortic lymph nodes, received 74 GBq (200 mCi) of I-131 MIBG. We obtained anterior and posterior images at 0.5, 16, 24, 64 and 145 hours after treatment. Two standard sources of 37 and 74 MBq of I-131 were imaged simultaneously. Cummulated I-131 MIBG uptake in tumor tissue was calculated after the correction of background activity, attenuation, system sensitivity and count loss at a high count rate. Results: The calculated absorbed radiation dose was 32-63 Gy/ 74 GBq, which was lower than the known dose for tumor remission (150-200 Gy). follow-up studies at 1 month showed minimally reduced tumor size on computed tomography, and mildly reduced I-131 MIBG uptake. Conclusion: We estimated radiation absorbed dose after therapeutic I-131 MIBG using a gamma camera and MIRD formula, which can be peformed in a clinical nuclear medicine laboratory. Our results suggest that the measurement of radiation absorbed dose in I-131 MIBG therapy is feasible as a routine clinical practice that can guide further treatment plan. The accuracy of dose measurement and correlation with clinical outcome should be evaluated further.

  • PDF

Beta Dosimetry for Applying $^{166}Ho$-chitosan Complex to Cystic Brain Tumor Treatment : Monte Carlo Simulations Using a Spherical Model ($^{166}Ho$-chitosan 복합체를 이용한 낭성뇌종양 치료를 위한 베타선의 흡수선량 평가 : 구형 모델을 이용한 Monte Cairo 모사계산)

  • Kim, Eun-Hee;Rhee, Chang-Hun;Lim, Sang-Moo;Park, Kyung-Bae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.433-439
    • /
    • 1997
  • $^{166}Ho$-chitosan complex, or $^{166}Ho$-CHICO, is a candidate pharmaceutical for intracavitary radiation therapy of cystic brain tumors because of the desirable nuclear characteristics of $^{166}Ho$ for therapeutic use and the suitable biological and chemical characteristics of chitosan, not to mention its ready producibility The amount of $^{166}Ho$-CHICO to be administered to obtain the goal therapeutic effect can be suggested by predicting the dose to the cyst wall for a varying pharmaceutical dose. When $^{166}Ho$-CHICO is infused into the cyst, the major part of the energy delivery by beta particles emitted from $^{166}Ho$ occurs in the cyst wall within 4mm in depth from the cyst wall surface. Also, realizing the attachment of $^{166}Ho$-CHICO to the cyst wall surface would change the predictions of dose to the cyst wall.

  • PDF

Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma (반복적인 $^{131}I$ rituximab 방사면역치료를 시행 받은 비호지킨 림프종 환자 군에서 종양 부위의 영상기반 방사선 흡수선량 평가와 임상적 의의)

  • Byun, Byung-Hyun;Kim, Kyeong-Min;Woo, Sang-Keun;Choi, Tae-Hyun;Kang, Hye-Jin;Oh, Dong-Hyun;Kim, Byeong-Il;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2009
  • Purpose: We assessed the absorbed dose to the tumor ($Dose_{tumor}$) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with $^{131}I$ rituximab for NHL. Materials and Methods: Patients with NHL (n=4) were administered a therapeutic dose of $^{131}I$ rituximab. Serial WB planar images alter RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROls were drawn on the region of tumor (n=7) and left medial thigh as background, and $Dose_{tumor}$ was calculated. The correlation between $Dose_{tumor}$ and the CT-based tumor volume change alter RIT was analyzed. The differences of $Dose_{tumor}$ and the tumor volume change according to the number of RIT were also assessed. Results: The values of absorbed dose were $397.7{\pm}646.2cGy$ ($53.0{\sim}2853.0cGy$). The values of CT-based tumor volume were $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2cc$), and the % changes of tumor volume before and alter RIT were $-29.8{\pm}44.3%$ ($-100.0%{\sim}+42.5%$), respectively. $Dose_{tumor}$ and the tumor volume change did not show the linear relationship (p>0.05). $Dose_{tumor}$ and the tumor volume change did not correlate with the number of repeated administration (p>0.05). Conclusion: We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extrahepatic Bile Duct Cancer with High Dose Rate Intraluminal Brachytherapy (간외 담도암 고선량률 관내근접방사선치료 시 몬테카를로 시뮬레이션을 통한 주변장기의 선량평가 연구)

  • Park, Ju-Kyeong;Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.467-474
    • /
    • 2014
  • The relative dose calculated by MCNPX and the relative dose measured by ionization chamber and solid phantoms evaluated the accuracy comparing with Monte Carlo simulation. In order to apply Monte Carlo simulation the intraluminal brachytherapy of extrahepatic bile duct cancer, 192Ir sealed radioactive source replicate, Bile duct and surrounding organs were made using KMIRD phantom based on a South Korea standard man. To check the absorbed dose of normal organs around bile duct, we set the specific effective energy and initial radioactivity to 1 Ci using MCNPX. Evaluation of the accuracy of the Monte Carlo simulation, the difference of the relative dose is the most 1.96% that satisfy the criteria that is the relative error less than 2% suggested by MCNPX code. In addition, The specific effective energy and absorbed dose of normal organs that were relatively adjacent to bile duct such as right side of kidney, liver, pancreas, transverse colon, spinal cord, stomach and small intestine were relatively high. on the contrary, the organs that were relatively distant to bile duct such as left side of kidney, spleen, ascending colon, descending colon and sigmoid colon were relatively low.

Absorbed Dose Determination for a Biological Sample Irradiated by Gamma Rays from a Cs-137 Source (Cs-137 감마선에 대한 생물학 연구용 시료의 흡수선량 결정에 관한 연구)

  • Jeong, Dong-Hyeok;Kim, Jeung-Kee;Yang, Kwang-Mo;Ju, Min-Su;Kim, Min-Young;Lee, Chang-Yeol;Kim, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.124-130
    • /
    • 2011
  • In this study the dosimetric evaluation for a biological sample irradiated by gamma rays from Cs-137 irradiator (Gamma Irradiator, Chiyoda Technol Co., Japan) was performed for radiobiological experiment. A spherical water with a diameter of 3 cm was assumed as a biological sample. The absorbed dose were determined by the air kerma based dosimetric calculation system. The theoretical and Monte Carlo calculations (MCNPX) were performed and compared to evaluate measured air kerma and determined absorbed dose respectively. As a result of comparison with theoretical calculation, the measured air kerma was in good agreement within 3.1% at the distance of 100 and 200 cm from the source. In comparison with Monte Carlo results the determined absorbed dose along the central axis was in good agreement within 1.9% and 3.7% at 100 cm and 200 cm respectively. Although the preliminary results were obtained in this study these results were used as a basis of dosimetric evaluation for radiobiological experiment. Extended study will be performed to evaluate the dose in various conditions of biological samples.

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

A Study on the Measurement Linearity of Photoluminescent Dosimeter (형광유리선량계의 계측 직선성 연구)

  • Jeong, Kyeong-Hwan;Jung, Dong-Kyung;Seo, Jeong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.841-847
    • /
    • 2021
  • Related institutions that use radiation are diverse in Korea, such as research, medical care, and education. Recently, the number of examinations and visits to medical institutions is increasing. As a result, the number of radiological examinations in medical institutions is increasing. Radiation safety management is necessary as well as exposure of radiation workers. For safety management, first of all, it is necessary to wear the personal exposure dosimeter correctly and measure it accurately after wearing it. This study tries to evaluate and verify the measurement straightness of PLD devices by radiation of a diagnostic generator. Radiation division irradiation time interval was measured after irradiating 10 times at 10, 30, and 60 sec and irradiating the irradiation distance from 30 to 100 cm at 10 cm intervals to measure the change in absorbed dose depending on the distance. As a result, there was no difference in absorbed dose by time interval. This is considered to be helpful in various studies by using a diagnostic generator for the study of high absorbed dose.