• Title/Summary/Keyword: 흡수사이클

Search Result 75, Processing Time 0.034 seconds

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

Simulation of the Characteristics of High-Performance Absorption Cycles (고성능 흡수냉동 사이클의 특성 시뮬레이션)

  • 윤정인;오후규;이용화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.231-239
    • /
    • 1995
  • This paper describes a computer simulation of the triple effect, water-lithium bromide absorption cooling cycles. The performance of the absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature, the working solution concentrations, the ratio of the amount of the weak solution to the high, middle and low temperature generators, and the temperature difference of each solution heat exchanger. The efficiency of different cycles has been studied and the simulation results show that higher coefficient of performance could be obtained for the parallel cycle of constant solution distribution rate. As a result of this analysis, the optimum designs and operating conditions were determined based on the operating conditions and coefficient of performance.

Themodynamic Characteristics of a Two-Stage Binary Absorption Cycle (2단(段) 2원(元) 흡수(吸收)사이클의 특성(特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Rie, D.H.;Kashiwagi, T.;Seo, J.Y.
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 1995
  • This paper concerns the study of a two-stage binary absorption cycle employing the refrigerant/absorbent combinations of $LiBr/H_2O$ and $NH_3/H_2O$. This cycle consists of coupling two single-effect absorption cycles so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effect of operating variables such as evaporator temperature, condenser and absorber temperature, and generator temperature on the coefficient of performance and temperature lift have been studied for two-stage binary absorption heat pump systems. It is found that this cycle has a large temperature lift at $105^{\circ}C$ of optimum generator temperature to obtain $50^{\circ}C$ of condenser temperature.

  • PDF

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

A New Energy Saving Process for Air Dehumidification : Analysis and Applications (공기제습의 새로운 에너지 절약과정의 해석과 응용)

  • 대한설비공학회
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.254-263
    • /
    • 1986
  • 공기의 제습 운전에 많은 에너지가 소요되므로 고효율과 경비절감이 가능한 새로운 기술의 연구가 필요하게 되었다. 이 글에서는 공기-공기 열점프 시스템과 흡수시스템을 새로이 제안한 MIDA 과정과 비교한다. LiCl 수용액을 사용한 흡수식 제습과 열펌프 사이클을 조합한 MIDA시스템으로 공기온도가 일정하거나 상승하게 되었다. 열펌프사이클로서 열을 흡수기에서 진공으로 작동되는 용액 재생기로 전달한다.

  • PDF

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution (신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석)

  • Gwon, O-Gyeong;Yun, Jae-Ho;Mun, Chun-Geun;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

Desulfurization Ability of CuO-Fe2O3 Sorbents with Respect to the Calcination Temperature by GC/microreactor (GC/microreactor를 이용한 소성온도에 따른 CuO-Fe2O3 흡수제의 탈황성능)

  • Lee, Hyo-Song;Kim, Jin-Yong;Kim, Jeong-Soo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.140-145
    • /
    • 2005
  • The desulfurization abilities using GC/microreactor have been examined for $CuO-Fe_2O_3$ sorbents with respect to calcination temperatures of 700, 900 and $1,100^{\circ}C$. CuO was used as a main active component, $Fe_2O_3$ was used as an additive one and 25 wt% $SiO_2$ was used as a support. The desulfurization reaction temperature was $500^{\circ}C$ and the regeneration reaction temperature was $700^{\circ}C$. From the XRD results, the $CuFeO_2$ compound has been observed for the fresh sorbent calcined at $1,100^{\circ}C$ and the $CuFeS_2$ compound for the reacted sorbent calcined at $1,100^{\circ}C$. By the BET results, however any significant differences among sorbents calcined at the three different temperatures of 700, 900 and $1,100^{\circ}C$ haven't been observed. Especially CFS1 (CuO : $Fe_2O_3$ : $SiO_2$=67.5 wt% : 7.5 wt% : 25 wt%) sorbent calcined at $1,100^{\circ}C$ maintained about 10 g sulfur/100 g sorbent for 100 cycles by the cyclic test.

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle (공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석)

  • Jeong, S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.488-500
    • /
    • 1995
  • An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

  • PDF