• 제목/요약/키워드: 흡기 기관

검색결과 135건 처리시간 0.018초

디젤기관의 흡기 맥동류가 체적효율에 미치는 영향 (The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구 (A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

흡기 조성 변화가 디젤기관의 성능에 미치는 영향 (Effects of Intake Gas Compositions on the Performance of Diesel Engine)

  • 김세원;이재규
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.49-58
    • /
    • 1994
  • A study on the performance of a Diesel engine with various intake gas compositions other than that of air are performed experimentally. In this study, the concentrations of each of oxygen, nitorgen, carbon dioxide, and argon are changed and their effects on the performance of the engine are investigated parametrically. The experiments are performed at constant engine speed condition, and main measured parameters are cylinder pressure, intake gas compositions, fuel consumption rate. Increase of oxygen concentration up to 24% improved the performance of the engine generally. The adverse effect was observed when the oxygen concentration was increased over 24%. Increase of carbon dioxide concentration degraded the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improved the overall performance. Finally, it is found that two most influencing factors affecting the performance of the Diesel engine in this study of intake gas composition variation are ignition delay and specific heat ratio of the intake gas.

  • PDF

밀러사이클 적용 스파크점화기관의 후기 흡기밸브 닫힘각 변화에 따른 연소성능 연구 (A Study on Combustion Characteristics of Spark-Ignited Engine with Different Late Intake Valve Closing for Miller Cycle)

  • 정진호;강선제;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.141-148
    • /
    • 2015
  • In order to research engine characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle, two cam for LIVC(Late Intake Valve Closing) were designed and fabricated an prototype valvetrain. And intake valve closing timing were adjusted to build low compressing and high expansion cycle for HEV. In experimental study, it were investigated with different engine speed, spark timing and air-fuel ratio to compare base cam and LIVC cam type. It was found that the volumetry efficiency and effective work of compression process were decreased in case of LIVC cam. When compared with the existing results, the maximum pressure in the cylinder was reduced about 12~13 bar and the volumetric efficiency was reduced about 16%.

나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구 (Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics)

  • 이지근;강신재
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF

HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 연구 (Potential of Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines)

  • 임옥택
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.7-14
    • /
    • 2010
  • 본 연구에서는 자착화특성이 다른 DME와 n-Butane을 이용하여 다양한 흡기공급방식에 따른 HCCI엔진연소에서 압력상승률의 저감특성에 대하여 조사하였다. 연소실내부의 가스압력측정, 광학측정용 엔진을 이용한 화학발광법의 측정 그리고 화학반응수치계산을 통하여 연소실내부에서 각 국소부분의 연소특성을 파악하였다. 최대압력상승률은 DME와 n-Butane의 혼합 상태에 의해 결정되어진다. DME가 성층화되고 n-Butane이 균일하게 분포되진 조건에서 가장 많이 감소되는데 두 연료가 균일한 경우에 비해서 최대압력상승률은 0.25MPa/ms 로 저감되었고 CA50도 5deg 지각되었다.

대형 CNG기관의 직접분사화에 의한 희박한계확장 (A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine)

  • 박정일;정찬문;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

직분식 디젤기관의 메탄올 흡기분사에 의한 기관성능과 배기배출물에 관한 연구 (A Study on the Engine Performance and Exhaust Emission with Intake Port Methanol Injection in a DI Diesel Engine)

  • 김명수;라진홍;안수길
    • 수산해양기술연구
    • /
    • 제36권3호
    • /
    • pp.249-256
    • /
    • 2000
  • In order to investigate the effectiveness of methanol, which has high latent heat of evaporation and oxygen contents, for DI diesel engine performance and exhaust emission, the methanol was injected at the suction port of DI diesel engine. The injector used for test was conventional gasoline engine injector and controlled the quantity of methanol per cycle by the power supply controller which designed specially for injector. The results shown that the maximum pressure point was delayed, the value of maximum pressure was decreased, and the concentrations of both NOx and Soot were decreased, as the methanol injection quantity increased, and also the thermal efficiency of engine injected methanol under the high load condition was similar to no methanol injection but under the medium load condition was decreased within the experimental conditions.

  • PDF

흡기중의 수증기분압과 점화시기 및 연료 변화에 따른 스파크 점화기관의 화염 전파 특성 분석 (An Experimental Analysis of the Effects of Water Vapor Partial Pressure in Inlet Air, Spark Advance and Fuel Type on the Flame Propagation in a Spark Ingnition Engine)

  • 이택헌;전광민
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.191-198
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air, spark advance and fuel type in the spark ignition engine were investigated through the experiments of combustion and flame arriving pattern analysis using ionization probe. The results of flame propagation experiment using ionization probe show that the flame which ignited from spark plug located at the center of the combustion chamber propagated faster in exhaust side than in intake side due to the mixture flow motion inducted into combustion chamber from intake tumble port at all conditions. And as the partial vapor pressure increased, the flame propagation became slower in all direction. Especially effects were greater for intake side than the exhaust side.

  • PDF

디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구 (A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines)

  • 배명환;임재근
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF