• Title/Summary/Keyword: 흡기조건

Search Result 62, Processing Time 0.018 seconds

Feasibility of Backfire Control and Engine Performance with Different Valve Overlap Period of Hydrogen-Fueled Engine with External Mixture (흡기관 분사식 수소기관의 밸브오버랩 기간 변화에 따른 기관성능과 역화억제 가능성)

  • Huynh, Thanh Cong;Kang, J.K.;Noh, K.C.;Lee, J.T.;Lee, J.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.67-74
    • /
    • 2007
  • 고효율의 실현이 가능한 흡기관 분사식 수소기관의 역화 억제 가능성을 파악하고자 밸브 오버랩 기간의 변화에 따른 제반 기관성능과 역화가 발생되는 역화한계 당량비를 실험적으로 해석하였다. 실험에는 기계식 연속 가변밸브 타이밍 시스템이 부착된 연구용 수소기관을 사용하였다. 밸브 오버랩기간은 배기밸브 개폐시기를 고정하고 흡기밸브 캠의 위상각을 조절하여 변화시켰다. 해석결과 밸브 오버랩 기간의 감소에 따른 제반기관성능은 통상의 기관과 유사하지만 역화한계 당량비가 확장되어 초기 단계이지만 수소기관의 역화발생에 밸브오버랩 기간이 관여하는 것이 보였다. 기관 회전수 1600 rpm, WOT의 실험 조건에서 밸브 오버랩 기간을 $20^{\circ}CA$에서 $0^{\circ}CA$로 감소시킨 경우 역화한계당량비는 약 45% 정도 확장되고 정미 토크는 16% 감소했다.

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF

실험적 출력 수정의 방법

  • 이성렬
    • Journal of the KSME
    • /
    • v.22 no.5
    • /
    • pp.380-388
    • /
    • 1982
  • 기관출력과 대기조건 각 변수와의 함수관계에서 이 함수가 서로 독립이고, 기관출력은 이들의 선형결합으로 표시됨을 실험으로 확인하였으며, 대기압력 변화 대신 흡기압력과 배기압력을 각각 변화시켜도 지장이 없음을 알았다. 이상과 같은 것으로부터 실험적 출력수정 방법의 타당성을 확인함과 동시에 통상의 대기상태의 변화에 있어서 수정 정밀도가 극히 높다는 것이 입증 되었 으므로 출력수정에 관한 충분한 자료가 되리라는 것을 믿는 바이다.

  • PDF

A Study on Engine Performance at the Intake Air Compensation by Supercharging in the Low Speed Diesel-Atkinson Cycle (과급에 의한 흡입공기 보상 시 저속 디젤-아트킨슨사이클에서 엔진성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1009-1015
    • /
    • 2011
  • In this study, in the high expansion cycle was conduced by variable valve timing system composition to close intake valve late, and in the intake air reduction on the low compression was solved by supercharging pressure. In this wise, by constituting Diesel-Atkinson cycle, this study looked into a possibility of thermal efficiency improvement. As a result, there was improvement in thermal efficiency and output in a whole range of closing timing from ABDC $40^{\circ}$ to ABDC $80^{\circ}$. However, after ABDC $70^{\circ}$ of closing timing, the thermal efficiency increase was getting smaller. As the result of the study, the optimum intake valve closing timing was about ABDC $70^{\circ}$, high loading territory of engine was more effective than low loading territory, and engine operation in middle loading territory was stable. At this time, brake thermal efficiency was 12.5% higher than ordinary engine on average.

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics (나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구)

  • 이지근;강신재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF

The Effects of Coating Treatments on Enteric Coating of the Soft Capsules Containing Omega-3 Fatty Acids (오메가-3 연질캡슐의 코팅 조건에 따른 장용성 코팅품질에 미치는 영향)

  • Ko, Won-Hwa;Hong, Jun-Kee;Lee, Sung-Wan;Cha, Ja-Hyun;Cha, Jae-Uk;Baek, Hyon-Ho;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.168-172
    • /
    • 2012
  • This article presents an evaluation of the effects of coating conditions on the enteric coating quality of soft gelatin capsules containing Omega-3 fatty acids. Three conditions were controlled: concentration of hydroxypropyl methylcellulose phthalate (6, 8, and 10 wt% in solution), temperature of the inlet air (32, 35, and $38^{\circ}C$), and the coating solution feed rate (7.5, 11.25, and 15.0 g/min). The transparency of the enteric coated soft gelatin capsules was evaluated by measuring the degree of whiteness of the surface using a spectrophotometer. Results showed that the most important parameter in the enteric coating process was the coating solution feed rate. As the coating solution feed rate decreased and inlet air temperature increased, the degree of whiteness of coating surfaces decreased. We also evaluated the disintegration properties of the enteric coated capsules in accordance with the Korea Health Functional Food Code.

A study on power improvement emission characteristics of marine diesel engine with response power 200HP turbocharger (대응출력 200마력 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • To improve efficiency of diesel engine which requests high output recently and is used all kinds of industrial areas, this thesis experimented dynamic characteristics and exhaust gas characteristics of diesel engine installed by supercharger of correspondent output 200HP and natural inhalation diesel engine through the dynamometer and exhaust gas analyzer in same condition. As the result of experiment with natural inhalation diesel engine and diesel engine installed by supercharger, there were a few differences of output, but dynamic characteristics at high speed showed increased output and efficiency of the engine installed by supercharger. On the contrary, in exhaust gas characteristics, the model installed by supercharger showed increased exhaust gas such as $NO_X$, $O_2$, etc, but added value of exhaust gas is low if considering $CO_2$ reduction and efficiency of dynamic characteristic's increase. Based on the results, diesel engine installed by supercharger is expected to show higher economic feasibility than natural inhalation diesel than natural inhalation engine from an angle of efficiency. Keywords: 200hp class Turbocharger, Exhaust Gas, Engine Performance, Marine Diesel Engine.