• Title/Summary/Keyword: 흙다짐

Search Result 126, Processing Time 0.025 seconds

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

Comparison of Short-term Mechanical Characteristics of Fine-grained Soils Treated with Lime Kiln Dust and Lime (석회노분과 석회로 처리된 세립토의 단기적 역학특성 비교)

  • 김대현;사공명;이용희
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2004
  • The Indiana Department of Transportation (INDOT) has permitted the use of Lime Kiln Dust (LKD) as a low-cost construction material in creating a workable platform for soil modification (not for soil stabilization) since the early 1990s on selected projects. However, the enhanced strength of soils with LKD has not been accounted for in the subgrade stability calculations in the design process. This study was initiated to evaluate how the lime kiln dust is a comparable material to hydrated lime. A series of laboratory tests were performed to assess the mechanical benefits of lime kiln dust in combination with various predominant fine grained soils encountered in the State of Indiana, such as A-4, A-6 and A-7-6. In the course of this study, several tests such as the Atterberg limits, standard Proctor, unconfined compression, CBR, volume stability, and resilient modulus were performed. As a result, mixtures of fine grained soils with 5% lime or 5% LKD substantially improve unconfined compressive strength up to 60% - 400%. CBR values for treated soils are in the range of 25 to 70 while those for untreated soils range from 3 to 18. In general, significant increase in resilient moduli of the soils treated with lime and LKD was observed. This indicates that lime kiln dust may be a viable, cost effective alternative to hydrated lime in enhancing the strength of fine grained soils.

A Study on Soil Cementation and Calcite Precipitation with Clay as a Medium (점토를 매개체로 한 탄산칼슘 석출 및 흙의 고결에 관한 연구)

  • Park, Sung-Sik;Suh, Eun-Hee;Chae, Kyung-Hyeon;Jang, Sang Kyu;Kim, Jin-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.17-27
    • /
    • 2015
  • In this study, we tried to precipitate calcium carbonate with carbonate ions decomposed from urea by plant extract and calcium ions dissolved in water. The clay particles carry a net negative charge on their surfaces. Such clay mineral was additionally mixed as a medium to improve soil strength and durability with environmentally-friendly way. The $1^{st}$ solution (plant extracts and urea) and the $2^{nd}$ solution (calcium chloride and clay) were mixed together with clean Nakdong River sand. Then, this mixed soil was compacted into a small cylindrical specimen and then air cured for 7 days in laboratory. The molar concentration of urea and calcium chloride was tested for three different conditions, 1, 5, and 7 mol. Three different clay contents (0, 1, and 3% per total weight) were mixed with sand. For each specimen, a series of unconfined compression test, a durability test, SEM, EDX and XRD analyses were carried out to evaluate its cementation and structure. As the molar concentration of the solution and clay content increased, the unconfined compressive strength and durability increased. The results of SEM, EDX and XRD analyses showed that calcite was precipitated around clay mineral. The thermogravimetry analysis indicated that calcium carbonate precipitated about 1~2% per total weight of the sample.

Study on the Soil Compaction (흙의 다짐에 관한 연구(I))

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1783-1790
    • /
    • 1969
  • It is one of the most economical method of soil stabilization works to compact soil, which increases soil density artificially. Compaction effort is to lessen void of soils, and consequently its aim is to enlarge friction and cohesion force, and reduce permeability of soil. Factors in compaction effort are moisture content, grain size, grain size distribution, physical properties, compaction method and temperature of soils etc. The results obtained in this study on the effects that grain size, gradation and physical properties influence upon compaction effort for 20 samples under the constant compaction method, are summarized as follows: 1. The bigger the maximum dry density is, the smaller the optimum moisture content is, on the other hand, the smaller the maximum dry densityis, the bigger the optimum moisture content is, ingeneral. 2. The coarser the grain size is, the bigger the maximum dry density is, and the optimum moisture content becomes small, and dry density-moisture content curve has the sharp peak, generally. Also, the finer the grain size is the smaller the maximum dry density is, and the optimum moisture content shows the big value, and dry density-moisture content curve has the dull peak. 3. The maximum dry density shows the biggest value on the sample to be about 15% of particles finer than No. 200 sieve. The more the percent passing of No. 10 sieve increase, the smaller the maximum dry density is. Soils which have uniformity coefficient less than 5 in particles larger than 0.074mm hardly show dry density-moisture content curve. 4. There is a relation which is ramax=2.3948-0.0376 Wopt between the maximum dry density and the optimum moisture content, namely, the maximum dry density is increased in proportion to decrease of the optimum moisture content. 5. There are relations to be the straight lines which the maximum dry density decrease, on the other hand, the optimum moisture content increase in accordance with enlargement of Atterberg Limit(LL, PL, PL) in compacted soils.

  • PDF

A Study on the Effect of Some Physical Properties of Soil on the Compaction (흙의 물리적 성질이 다짐에 미치는 영향)

  • 김성교;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4171-4183
    • /
    • 1976
  • This study is to investigate the effect of some physical properties of soil on the compaction. The compaction effect depends upon various factors such as soil type, moisture content, gradation and compaction energy. In this study, with steady compaction energy, the relationships between maximum dry density and moisture content, gradation and consistency were analyzed by soil types. Some results obtained in this study are summarized as follows 1. Generally, the coarser the grain size, the bigger is the maximum dry density and the smaller is the optimum moisture content and its moisture-dry denisty curve is relatively steep. The finner the grain size, the smaller is the max. dry density and the bigger is the opt. moisture content and its moisture-dry density curve is less steep. 2. The relationship between max. dry density (${\gamma}$dmax) and opt. moisture content, void ratio, clay content, percent passing of No. 200 sieve, liquid limit and plastic limit can be represented by the equation ${\gamma}$dmax =ao+a1X(a0>0, a1<0) 3. The relationship between opt. moisture content (Wopt) and clay content, percent passing of No. 200 sieve, liquid limit and plastic limit can be represented by the equation Wopt=a0+a1X(a0>0, al>0). 4. The fact that maximum dry density of the compacted soil is decreased with the increase of the optimum moisture content in any types of soil tested, and the fact that optimum moisture content can be positively correlated with clay content, percent passing of No. 200 sieve, liquid limit and plastic limit of the soil, lead to the conclusion that clay content, percent passing of No. 200 sieve, liquid limit and plastic limit of the soil are direct factors in reduction of the maximum dry density of engineering soil.

  • PDF

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

Engineering Properties of Tire Treads for Soil Reinforcement (지반보강재로서 타이어 트레드의 공학적 특성)

  • Yoon, Yeowon;Cho, Sungsoo;Kim, Keunsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • In order to utilize treads of waste tire as reinforcement material it is necessary to know the interface friction angle between tread surfaces and soil and tensile strength of connection joint of tire treads. In this research large direct shear tests were performed to get the interface friction angle between the inner and outer surfaces of treads and soil for different degree of compaction. From the large direct shear tests, the ratio of interface friction angle to the shear friction angle of sand, ${\delta}/{\phi}$, were 1.06 in outside surface of tire tread and 0.93 in inside surface of tire tread. For weathered granite soil the ratio of interface friction angle was 0.98 and 0.92 for outside and inside of tread, respectively. Also tensile tests were performed using universal testing machine for the connection joint of treads and Tirecell units using bolts. The tensile strength of connection joint increased with the number of bolts and with the sizes of washers. Connection by polypropylene ropes showed lower strength than those of bolts.

  • PDF

Water Content and Dry Density Measurement of Soil Using Flat TDR System (Flat TDR 시스템을 이용한 흙의 함수비와 건조단위중량 측정)

  • Kim, Wanmin;Kim, Daehyeon;Seo, Hyeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.5-19
    • /
    • 2017
  • This study has been conducted to improve the conventional compaction management method by measuring the water content and dry unit weight of soil using the Time Domain Reflectometry (TDR) method. In order to verify the measured value of the developed flat TDR system, laboratory tests were conducted on six soils. Also, based on laboratory experiments, field tests were conducted to evaluate the applicability of the developed flat TDR system. Also, a comparison experiment was conducted with the Purdue TDR system. In addition, FE analysis was done to confirm the influence range of the Flat probe. As a result, it was confirmed that the influence range was about 10 cm. As a result of laboratory experiment, the water content ratio showed an error of about 0.4% on the average, and in the case of dry unit weight, it showed an error of about 1.6%. For the field test, the water content ratio and unit weight showed an error of 0.8% and 2.5%, respectively. Through the experimental results, it was confirmed that the measured value of the Flat TDR system is more accurate than that of the conventional TDR system.

Engineering Characteristics of Mixtures according to Water Sludge Ratio and Reinforcing Waste Fishing Net (정수슬러지의 혼합비율 및 폐어망 보강에 따른 혼합토의 공학적 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 2013
  • In order to recycle both water sludge and waste fishing net(WFN), it was investigated in this paper the engineering characteristics of mixtures that consisted of different content of water sludge(0%, 10%, 30%, 50%) and reinforced with waste fishing net(unreinforced, untreated WFN, glue treated WFN). WFN or glue treated WFN(1&2 layers) was also added to the mixture to improve the interlocking between the soil particle and WFN. Several series of laboratory tests such as compaction test, triaxial test, oedometer test, permeability test and leaching test were carried out. The experimental test results indicated that, as water sludge content increases, maximum dry unit weight, cohesion, friction angle, and permeability of the mixture decrease, while optimum moisture content, compression index, expansion index and compressibility increase. For the case of reinforced mixture, its cohesion and friction angle are increased due to the inclusion of WFN and glue treated WFN. Leaching result of mixture was satisfied with standard of ministry of environment.