• Title/Summary/Keyword: 흑연노즐

Search Result 12, Processing Time 0.025 seconds

A Study on the Influence Factors for Ablation Rate of Graphite Nozzle Throat Insert (흑연 노즐목 삽입재의 삭마율에 미치는 영향 인자 연구)

  • Hahm, Heecheol;Kang, Yoongoo;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.12-20
    • /
    • 2017
  • The ablation characteristics of graphite nozzle throat insert was analyzed for the use in solid rocket propulsion system. The propulsion system was composed of three types of conventional nozzles, such as De-Laval type, blast tube type, and submerged type. Various kinds of propellants were used in ten kinds of propulsion system that had different shapes with each other. Total forty eight tests were performed. From the results of the analysis, it was found that the ablation rate was increased for the higher average chamber pressure and the higher oxidizer mole fraction. A useful correlation for nozzle throat ablation rate was developed in terms of the chamber pressure, oxidizer mole fraction, and throat size. The calculated ablation rates from the correlation showed agreement within ${\pm}0.10mm/s$ with the experimentally determined values.

A Study on Ablation Behavior of Graphite Nozzle using Liquid Rocket Engine (액체로켓엔진을 이용한 Graphite 노즐의 삭마 거동 연구)

  • Cho Nam Choon;Park Hee Ho;Keum Young Tag
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.119-122
    • /
    • 2005
  • Ablation phenomena is very complicated because it includes momentum, energy and mass transfer, chemical reactions as well as phase change. In this paper, ablation at the rocket nozzle throat is modeled as unsteady one dimensional axi-symmetric with proper boundary conditions and field equation is solved numerically. Analytical results are compared with measured ablation data from firing experimental liquid rocket engine. Test variables are combustion pressure and mixture ratio. for low combustion pressure and low mixture ratio, the discrepancy between analysis and experiments are large but for the normal rocket operation range, two results show a simliar trend with maximum discrepancy of $100\%$.

  • PDF

Compression Fracture Behavior of ATJ Graphite for Rocket Nozzle throat (로켓 노즐목에 사용하는 ATJ 흑연의 압축 파단 특성)

  • Choi, Hoonseok;Kim, Jaehoon;Kim, Yeonwook;Seo, Bohwi;Moon, Soonil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.61-66
    • /
    • 2014
  • Graphite is commonly used for rocket nozzle. The purpose of the present study is to evaluate compression fracture behavior of ATJ graphite. Uniaxial compression test is conducted in accordance with ASTM C 695 in the range of R.T to $900^{\circ}C$. The size effects of specimen on the compressive strength and fracture behavior were investigated. Two types of cylindrical specimen, i.e., where the diameter to length ratio is 1:2 (ASTM C 695 specimen) or 1:1, were tested at room temperature.

Analysis on Thermochemical Erosion Properties for Thermal Insulation Materials of Graphite Nozzle Throat (흑연 노즐목 내열재의 열화학적 침식 특성 분석)

  • Kim, Young-in;Lee, Soo-yong
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • In the solid rocket motor (SRM), a thrust of rocket is generated by a nozzle so it is very important device. The nozzle of SRM is a condition of high temperature and high pressure so occurs the erosion by combustion gas. The liquid rocket propulsion systems (LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. This paper deal with the development of the oxy-acetylene torch tester and investigate the thermochemical erosion properties for the thermal insulation materials of the graphite rocket nozzle throat through the experiment. The results of experiments are compared with the results of Theoretical model and identify the key factors affecting of erosion. The results is in good agreement with the experimental data.

추진기관 노즐용 Needle Punch 탄소/탄소 복합재료 제조

  • Jo, Dae-Hyeon;Jo, Chae-Uk;Lee, Jong-Mun;Gu, Hyeong-Hoe;Lee, Jae-Yeol;Yun, Nam-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.467-470
    • /
    • 2008
  • 추진기관용 노즐에 사용하는 대표적인 소재로는 흑연소재와 탄소/탄소 복합재료를 들 수 있다. 흑연 소재는 열충격 저항성이 취약하여 사용 중 파손의 발생가능성이 높아 현재는 열축격 저항성이 우수한 탄소/탄소 복합재료를 주로 사용하고 있다. 본 연구를 통하여 수입에 의존하였던 Quasi-3D 구조의 니들펀치(Needle Punch) 프리폼을 국산화 개발하였다. 본 연구에서는 니들펀치 프리폼의 제조 공정 및 밀도화 공정을 다루고자 한다.

  • PDF

A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert (노즐목 적용 탄소/탄소 복합재료의 열반응 특성 연구)

  • Ham Hee-Cheol;Bae Joo-Chan;Hwang Ki-Young;Kang Yoon-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.162-166
    • /
    • 2005
  • A thermal resistance estimation of carbon/carbon composites used as the nozzle throat insert of solid rocket motor was performed using TPEM motor. Three types of TPEM motor and two types of propellant were employed. The ablation rate is higher for the higher chamber pressure and also higher for the higher concentration of oxidizing species in combustion gas, but it is lower for the higher material density.

  • PDF

A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert (노즐목 적용 탄소/탄소 복합재료의 열반응 특성 연구)

  • Ham Hee-Cheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • A thermal resistance estimation of carbon/carbon composites used as the nozzle throat insert of solid rocket motor was performed using TPEM motor. Three types of TPEM motor and two types of propellant were employed. The ablation rate is higher for the higher chamber pressure and also higher for the higher concentration of oxidizing species in combustion gas, but it is lower for the higher material density.

Corrosion mechanism of zirconia/graphite SEN by molten steel and slag (용강 및 슬래그에 의한 지르코니아/흑연계 침지노즐의 침식기구)

  • Sunwoo, Sik;Kim, Hwan;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.226-232
    • /
    • 2000
  • Corrosion mechanisms by molten steel and slag were investigated in the zirconia/graphite composite as a material of submerged entry nozzle (SEN) using for producing high quality steel. Most of corrosions were started by the dissolution of zirconia particles into molten steel and oxidation of graphite, but subsequently three modes of corrosion were observed. Firstly, the penetration of slag into zirconia matrix was induced to the diffusion of stabilizing agent outward cubic zirconia grains, and the destabilization of cubic to fine monoclinic zirconia particles, which is enhanced to the decomposition and dissolution of them into slag. Secondly, molten slag penetrates into large cubic zirconia particles along grain boundary and decomposed them to fine cubic grains, which is also enhanced to the dissolution of zirconia grains into slag. Lastly, reaction between carbon and cubic zirconia was formed porous ZrC and enhanced the dissolution of it into slag.

  • PDF

Fracture Behavior of Graphite Material at Elevated Temperatures Considering Oxidation Condition (산화환경을 고려한 흑연 내열재의 고온파단특성)

  • Choi, Hoon Seok;Kim, Jae Hoon;Oh, Kawng Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1091-1097
    • /
    • 2015
  • Graphite material has been widely used for making the rocket nozzle throat because of its excellent thermal properties. However, when compared with typical structural materials, graphite is relatively weak with respect to both strength and toughness, owing to its quasi-brittle behavior, and gets oxidized at $450^{\circ}C$. Therefore, it is important to evaluate the thermal and mechanical properties of this material for using it in structural applications. This study presents an experimental method to investigate the fracture behavior of ATJ graphite at elevated temperatures. In particular, the effects of major parameters such as temperature, loading, and oxidation conditions on strength and fracture characteristics were investigated. Uniaxial compression and tension tests were conducted in accordance with the ASTM standard at room temperature, $500^{\circ}C$, and $1,000^{\circ}C$. Fractography analysis of the fractured specimens was carried out using an SEM.

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.