• Title/Summary/Keyword: 흉부 X선

Search Result 156, Processing Time 0.035 seconds

Diagnosis of Scoliosis Using Chest Radiographs with a Semi-Supervised Generative Adversarial Network (준지도학습 방법을 이용한 흉부 X선 사진에서 척추측만증의 진단)

  • Woojin Lee;Keewon Shin;Junsoo Lee;Seung-Jin Yoo;Min A Yoon;Yo Won Choi;Gil-Sun Hong;Namkug Kim;Sanghyun Paik
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1298-1311
    • /
    • 2022
  • Purpose To develop and validate a deep learning-based screening tool for the early diagnosis of scoliosis using chest radiographs with a semi-supervised generative adversarial network (GAN). Materials and Methods Using a semi-supervised learning framework with a GAN, a screening tool for diagnosing scoliosis was developed and validated through the chest PA radiographs of patients at two different tertiary hospitals. Our proposed method used training GAN with mild to severe scoliosis only in a semi-supervised manner, as an upstream task to learn scoliosis representations and a downstream task to perform simple classification for differentiating between normal and scoliosis states sensitively. Results The area under the receiver operating characteristic curve, negative predictive value (NPV), positive predictive value, sensitivity, and specificity were 0.856, 0.950, 0.579, 0.985, and 0.285, respectively. Conclusion Our deep learning-based artificial intelligence software in a semi-supervised manner achieved excellent performance in diagnosing scoliosis using the chest PA radiographs of young individuals; thus, it could be used as a screening tool with high NPV and sensitivity and reduce the burden on radiologists for diagnosing scoliosis through health screening chest radiographs.

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

Diagnostic Classification of Chest X-ray Pneumonia using Inception V3 Modeling (Inception V3를 이용한 흉부촬영 X선 영상의 폐렴 진단 분류)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.773-780
    • /
    • 2020
  • With the development of the 4th industrial, research is being conducted to prevent diseases and reduce damage in various fields of science and technology such as medicine, health, and bio. As a result, artificial intelligence technology has been introduced and researched for image analysis of radiological examinations. In this paper, we will directly apply a deep learning model for classification and detection of pneumonia using chest X-ray images, and evaluate whether the deep learning model of the Inception series is a useful model for detecting pneumonia. As the experimental material, a chest X-ray image data set provided and shared free of charge by Kaggle was used, and out of the total 3,470 chest X-ray image data, it was classified into 1,870 training data sets, 1,100 validation data sets, and 500 test data sets. I did. As a result of the experiment, the result of metric evaluation of the Inception V3 deep learning model was 94.80% for accuracy, 97.24% for precision, 94.00% for recall, and 95.59 for F1 score. In addition, the accuracy of the final epoch for Inception V3 deep learning modeling was 94.91% for learning modeling and 89.68% for verification modeling for pneumonia detection and classification of chest X-ray images. For the evaluation of the loss function value, the learning modeling was 1.127% and the validation modeling was 4.603%. As a result, it was evaluated that the Inception V3 deep learning model is a very excellent deep learning model in extracting and classifying features of chest image data, and its learning state is also very good. As a result of matrix accuracy evaluation for test modeling, the accuracy of 96% for normal chest X-ray image data and 97% for pneumonia chest X-ray image data was proven. The deep learning model of the Inception series is considered to be a useful deep learning model for classification of chest diseases, and it is expected that it can also play an auxiliary role of human resources, so it is considered that it will be a solution to the problem of insufficient medical personnel. In the future, this study is expected to be presented as basic data for similar studies in the case of similar studies on the diagnosis of pneumonia using deep learning.

Evaluation of Multi-resolution Extraction Filter for Pulmonary Nodules in Chest X-ray Image (흉부 X선 영상내 다중해상도 폐 종류 검출필터의 평가)

  • Kim, Eung-Kyeu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1983-1984
    • /
    • 2011
  • 본 논문에서는 흉부 X선 영상으로부터 폐 종류 음영을 검출하기 위한 필터를 예측해서 바람직하게 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 이전부터 제안한 다중해상도 라플라시안-가우시안 필터의 평가를 행한다. 전문의의 진단보조 혹은 종합자동진단시스템의 구성요소로서 필터가 행하는 역할을 고려한 후에 필터가 만족해야할 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중해상도 필터가 단일해상도 필터에 비해 높은 성능을 갖게됨을 명확히 한다.

  • PDF

Evaluation of Pulmonary Nodules filter on energy subtraction X-ray Images (에너지 차분 흉부 X선 화상에 있어서 폐종류 음영 필터의 평가)

  • 김응규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.386-388
    • /
    • 2000
  • 에너지 차분 흉부 단순 X선 화상으로부터 폐종류 음영을 검출하기 위한 필터를 예측해서 그 성능을 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 기존에 제안된 필터인 다중 해상도 ▽2G 필터의 평가를 행한다. 방사선과 전문의의 진단보조 혹은 총합자동진단시스템의 구성요소로서 필터가 발휘한 역할을 고려한 후, 필터가 만족해야 할 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중 해상도 필터가 단일 해상도 필터에 비해 높은 성능을 나타내고 있음을 명확히 한다.

  • PDF

Detection of Pulmonary Nodules' Shadow on Chest X-ray Image (흉부 X선 영상에서 폐 종류 음영 검출)

  • Kim, Eung-Kyeu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.327-328
    • /
    • 2007
  • 에너지 흉부 단순 X선 영상으로부터 폐 종류 음영을 검출하기 위한 필터를 예측해서 성능좋게 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 기존에 제안된 다중 해상도 ${\nabla}^{2}G$ 필터의 평가를 행한다. 전문의의 진단보조 혹은 총합자동진단시스템의 구성요소로서 필터가 수행한 역할을 고려한 후, 필터가 만족해야만 하는 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중해상도 필터가 단일해상도 필터에 비해 좋은 성능을 나타내고 있음을 명확히 한다.

  • PDF

Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly (심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가)

  • Jeong, Woo-Yeon;Kim, Jung-Hun;Park, Ji-Eun;Kim, Min-Jeong;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.455-461
    • /
    • 2021
  • Cardiomegaly is one of the most common diseases seen on chest X-rays, but if it is not detected early, it can cause serious complications. In view of this, in recent years, many researches on image analysis in which deep learning algorithms using artificial intelligence are applied to medical care have been conducted with the development of various science and technology fields. In this paper, we would like to evaluate whether the Inception V3 deep learning model is a useful model for the classification of Cardiomegaly using chest X-ray images. For the images used, a total of 1026 chest X-ray images of patients diagnosed with normal heart and those diagnosed with Cardiomegaly in Kyungpook National University Hospital were used. As a result of the experiment, the classification accuracy and loss of the Inception V3 deep learning model according to the presence or absence of Cardiomegaly were 96.0% and 0.22%, respectively. From the research results, it was found that the Inception V3 deep learning model is an excellent deep learning model for feature extraction and classification of chest image data. The Inception V3 deep learning model is considered to be a useful deep learning model for classification of chest diseases, and if such excellent research results are obtained by conducting research using a little more variety of medical image data, I think it will be great help for doctor's diagnosis in future.

Is a Camera-Type Portable X-Ray Device Clinically Feasible in Chest Imaging?: Image Quality Comparison with Chest Radiographs Taken with Traditional Mobile Digital X-Ray Devices (카메라형 휴대형 X선 장치는 흉부 촬영에서 임상적 사용이 가능한가?: 기존의 이동형 디지털 X선 장치로 촬영한 흉부 X선 사진과 영상품질 비교)

  • Sang-Ji Kim;Hwan Seok Yong;Eun-Young Kang;Zepa Yang;Jung-Youn Kim;Young-Hoon Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.138-146
    • /
    • 2024
  • Purpose To evaluate whether the image quality of chest radiographs obtained using a camera-type portable X-ray device is appropriate for clinical practice by comparing them with traditional mobile digital X-ray devices. Materials and Methods Eighty-six patients who visited our emergency department and underwent endotracheal intubation, central venous catheterization, or nasogastric tube insertion were included in the study. Two radiologists scored images captured with traditional mobile devices before insertion and those captured with camera-type devices after insertion. Identification of the inserted instruments was evaluated on a 5-point scale, and the overall image quality was evaluated on a total of 20 points scale. Results The identification score of the instruments was 4.67 ± 0.71. The overall image quality score was 19.70 ± 0.72 and 15.02 ± 3.31 (p < 0.001) for the mobile and camera-type devices, respectively. The scores of the camera-type device were significantly lower than those of the mobile device in terms of the detailed items of respiratory motion artifacts, trachea and bronchus, pulmonary vessels, posterior cardiac blood vessels, thoracic intervertebral disc space, subdiaphragmatic vessels, and diaphragm (p = 0.013 for the item of diaphragm, p < 0.001 for the other detailed items). Conclusion Although caution is required for general diagnostic purposes as image quality degrades, a camera-type device can be used to evaluate the inserted instruments in chest radiographs.

Clinical Application of Artificial IntelligenceBased Detection Assistance Devices for Chest X-Ray Interpretation: Current Status and Practical Considerations (흉부 X선 인공지능 검출 보조 의료기기의 임상 적용: 현황 및 현실적 고려 사항)

  • Eui Jin Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.4
    • /
    • pp.693-704
    • /
    • 2024
  • Artificial intelligence (AI) technology is actively being applied for the interpretation of medical imaging, such as chest X-rays. AI-based software medical devices, which automatically detect various types of abnormal findings in chest X-ray images to assist physicians in their interpretation, are actively being commercialized and clinically implemented in Korea. Several important issues need to be considered for AI-based detection assistant tools to be applied in clinical practice: the evaluation of performance and efficacy prior to implementation; the determination of the target application, range, and method of delivering results; and monitoring after implementation and legal liability issues. Appropriate decision making regarding these devices based on the situation in each institution is necessary. Radiologists must be engaged as medical assessment experts using the software for these devices as well as in medical image interpretation to ensure the safe and efficient implementation and operation of AI-based detection assistant tools.

A Study on the Segmentation of Lung Region using Competitive Recurrent Neural Network (경쟁 순환 신경망을 이용한 폐 영역분할에 관한 연구)

  • Kim, Bo-Yeon;Park, Gwang-Seok;Hwang, Hui-Yung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.65-68
    • /
    • 1992
  • 흉부 X선 영상을 판독함에 있어서 중요한 정보중의 하나로 폐실질의 조직 특성이 이용된다. X선 영상에서 뼈 혹은 심장, 굵은 혈관등은 X선의 투과율이 적어 시각적으로 밝고 균일한 재질로 나타나며, 공기가 채워져 있는 폐실질은 어둡고 산소/이산화탄소 교환에 관계되는 미세한 조직들에 따라 균일하지 않은 재질로 나타나는 특성을 보이고 있다. 본 연구에서는 공간적인 주위조직의 경보를 이영하여 현지의 부분을 예측하여 인식하도록 수정된 경쟁 순환 신경망을 이용하여 흉부 X선 영상에서의 순수한 폐실질 부위를 영역 분할한다.

  • PDF