• Title/Summary/Keyword: 흉부 팬텀

Search Result 70, Processing Time 0.023 seconds

The Use of Continuous Confidence Judgments in ROC of Digital Radiography (디지털 X선영상 평가에서 연속확신도법 ROC의 적용)

  • Kim, Hark-Sung;Lee, In-Ja;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.147-151
    • /
    • 2009
  • In general, the discrete confidence judgments that use five-step assessment method have been used to assess the medical images by ROC. TPF or FPF can be computed easily with this independent reading test. However, during experiments, it happens frequently that adequate distribution for observers is required to smoothly estimate the ROC curve. In addition, data becomes invalid for distribution of the created categories. To solve such problems or to apply the ROC interpretation to data that is not obtained from the experimental observation, the continuous confidence judgements (CCJ) has been proposed, which implements ROC interpretation using continuously-distributed experimental results without category classification has been used. As the use of CCJ to assess medical images was barely reported in Korea, we applied it to the assessment of chest digital images in this study. The results showed that a smooth ROC curve was obtained conveniently by the commercialized program and the characteristic value was measured easily. Therefore, it is recommended that this method can be applied to the assessment of digital medical images.

  • PDF

A Study on the Additional Absorbed Dose of Normal Tissues by Image Guided Radiation Therapy(IGRT) (영상유도 방사선 치료(IGRT)에 따른 정상 조직의 추가 피폭에 대한 연구)

  • Kim, Gha-Jung;Ryu, Jun-Min;Choi, Jun-Gu;Hong, Dong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • The recent radiation therapy field can provide treatment which guarantees a high degree of accuracy, due to patient set-up using various image guided radiation therapy(IGRT) instruments. But the additional absorbed dose to patient's normal tissues is increasing. Therefore, this study measured the absorbed dose to surrounding normal tissues which is caused by patient set-up using OBI, CBCT, ExacTrac, among various IGRT instruments. The absorbed dose to the head, the chest, the abdomen, and the pelvis from CBCT was 12.57 mGy, 20.82 mGy, 82.93 mGy, and 52.70 mGy, respectively. Also, the absorbed dose from OBI and ExacTrac ranged from 0.76 to 8.58 mGy and from 0.14 to 0.63 mGy, respectively. As a result, CBCT's absorbed dose was far higher than other instruments. CBCT's surface dose was far higher than others, too, but OBI's entrance skin dose was almost the same as CBCT's.

Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation (전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용)

  • Park, Seung-Jin;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Nah, Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.233-241
    • /
    • 1994
  • Purpose : This study was performed to verify dose distribution with the tissue compensator which is used for uniform dose distribution in total body irradiation(TBI). Materials and methods : The compensators were made of lead(0.8mm thickness) and aluminum(1mm or 5mm thickness) plates. The humanoid phantom of adult size was made of paraffin as a real treatment position for bilateral total body technique. The humanoid phantom was set at 360cm of source-axis distance(SAD) and irradiated with geographical field size(FS) $144{\times}144cm^2(40{\times}40cm^2$ at SAD 100cm) which covered the entire phantom. Irradiation was done with 10MV X-ray(CLINAC 1800, Varian Co., USA) of linear accelerator set at Department of Therapeutic Radiology, Chonnam University Hospital. The midline absorbed dose was checked at the various regions such as head, mouth, mid-neck, sternal notch, mid-mediastinum, xiphoid, umbilicus, pelvis, knee and ankle with or without compensator, respectively. We used exposure/exposure rate meter(model 192, Capintec Inc., USA) with ionization chamber(PR 05) for dosimetry, For the dosimetry of thorax region TLD rods of $1x1x6mm^3$ in volume(LiF, Harshaw Co., Netherland) was used at the commercially available humanoid phantom. Results : The absorbed dose of each point without tissue compensator revealed significant difference(from $-11.8\%\;to\;21.1\%$) compared with the umbilicus dose which is a dose prescription point in TBI. The absorbed dose without compensator at sternal notch including shoulder was $11.8\%$ less than the dose of umbilicus. With lead compensator the absorbed doses ranged from $+1.3\%\;to\;-5.3\%$ except mid-neck which revealed over-compensation($-7.9\%$). In case of aluminum compensator the absorbed doses were measured with less difference(from $-2.6{\%}\;to\;5.3\%$) compared with umbilicus dose. Conclusion : Both of lead and aluminum compensators applied to the skull or lower leg revealed a good compensation effect. It was recognized that boost irradiation or choosing reference point of dose prescription at sternal notch according to the lateral thickness of patient in TBI should be considered.

  • PDF

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Image Evaluation and Exposure Dose with the Application of Tube Voltage and Adaptive Statistical Iterative Reconstruction of Low Dose Computed Tomography (저 선량 전산화단층촬영의 관전압과 적응식 통계적 반복 재구성법 적용에 따른 영상평가 및 피폭선량)

  • Moon, Tae-Joon;Kim, Ki-Jeong;Lee, Hye-Nam
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying filter back projection (FBP), the existing test method, and adaptive statistical iterative reconstruction (ASIR) with different values of tube voltage during the low dose computed tomography (LDCT). With the image reconstruction method as basis, chest phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of tube voltage (100 kVp, 120 kVp). For image evaluation, back ground noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were measured, and, for dose assessment, CTDIvol and DLP were measured respectively. In terms of image evaluation, there was significant difference in ascending aorta (AA) SNR and inpraspinatus muscle (IM) SNR with the different amount of tube voltage (p < 0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120 kVp were 2.6 mGy with no-ASIR and 2.17 mGy with 20%-ASIR respectively, decreased by 0.43 mGy, and the values with 100 kVp were 1.61 mGy with no-ASIR and 1.34 mGy with 20%-ASIR, decreased by 0.27 mGy. In terms of DLP, the measured values with 120 kVp were $103.21mGy{\cdot}cm$ with no-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$ (about 16.7%), and the values with 100 kVp were $63.84mGy{\cdot}cm$ with no-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$ (about 16.7%). At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise.

The Evaluation and Development of Head and Neck Radiation Protective Device for Chest Radiography in 10 Years Children (소아(10세) 흉부 방사선촬영에서의 두경부 방사선 방어기구 개발 및 평가)

  • Lee, Jun Ho;Lim, Hyun Soo;Lee, Seung Yeol
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • The frequency of diagnostic radiation examinations in medical institutions has recently increased to 220 million cases in 2011, and the annual exposure dose per capita was 1.4 mSv, 51% and 35% respectively, compared to those in 2007. The number of chest radiography was found to be 27.59% of them, the highest frequency of normal radiography. In this study, we developed a shielding device to minimize radiation exposure by shielding areas of the body which are unnecessary for image interpretation, during the chest radiography. And in order to verify its usefulness, we also measured the difference in entrance surface dose (ESD) and the absorbed dose, before and after using the device, by using an international standard pediatric (10 years) phantom and a glass dosimeter. In addition, we calculated the effective dose by using a Monte Carlo simulation-based program (PCXMC 2.0.1) and evaluated the reduction ratio indirectly by comparing lifetime attributable risk of cancer incidence (LAR). When using the protective device, the ESD decreased by 86.36% on average, nasal cavity $0.55{\mu}Sv$ (74.06%), thyroid $1.43{\mu}Sv$ (95.15%), oesophagus $6.35{\mu}Sv$ (78.42%) respectively, and the depth dose decreased by 72.30% on average, the cervical spine(upper spine) $1.23{\mu}Sv$ (89.73%), salivary gland $0.5{\mu}Sv$ (92.31%), oesophagus $3.85{\mu}Sv$ (59.39%), thyroid $2.02{\mu}Sv$ (73.53%), thoracic vertebrae(middle spine) $5.68{\mu}Sv$ (54.01%) respectively, so that we could verify the usefulness of the shielding mechanism. In addition, the effective dose decreased by 11.76% from $8.33{\mu}Sv$ to $7.35{\mu}Sv$ before and after wearing the device, and in LAR assessment, we found that thyroid cancer decreased to male 0.14 people (95.12%) and female 0.77 people (95.16%) per one million 10-year old children, and general cancers decreased to male 0.14 people (11.70%) and female 0.25 people (11.70%). Although diagnostic radiation examinations are necessary for healthcare such as the treatment of diseases, based on the ALARA concept, we should strive to optimize medical radiation by using this shielding device actively in the areas of the body unnecessary for the diagnosis.

Evaluation of Effective and Organ Dose Using PCXMC Program in DUKE Phantom and Added Filter for Computed Radiography System (CR 환경에서의 흉부촬영 시 Duke Phantom과 부가여과를 이용한 유효선량 및 장기선량 평가)

  • Kang, Byung-Sam;Park, Min-Joo;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • By using a Chest Phantom(DUKE Phantom) focusing on dose reduction of diagnostic radiation field with the most use of artificial radiation, and attempt to reduce radiation dose studies technical radiation. Publisher of the main user of the X-ray Radiological technologists, Examine the effect of reducing the radiation dose to apply additional filtering of the X-ray generator. In order to understand the organ dose and effective dose by using the PC-Based Monte Carlo Program(PCXMC) Program, the patient receives, was carried out this research. In this experiment, by applying a complex filter using a copper and Al(aluminum,13) and filtered single of using only aluminum with the condition set, and measures the number of the disk of copper indicated by DUKE Phantom. The combination of the composite filtration and filtration of a single number of the disk of the copper is the same, with the PCXMC 2.0. Program looking combination of additional filtration fewest absorbed dose was calculated effective dose and organ dose. Although depends on the use mAs, The 80 kVp AP projection conditions, it is possible to reduce the effective amount of about 84 % from about 30 % to a maximum at least. The 120 kVp PA projection conditions, it is possible to reduce the effective amount of about 71 % from about 41 % to a maximum of at least. The organ dose, dose reduction rate was different in each organ, but it showed a decrease of dose rate of 30 % to up 100 % at least. Additional filtration was used on the imaging conditions throughout the study. There was no change in terms of video quality at low doses. It was found that using the DUKE Phantom and PCXMC 2.0 Program were suitable to calculate the effect of reducing the effective dose and organ dose.

Effect of Noise on Density Differences of Tissue in Computed Tomography (컴퓨터 단층촬영의 조직간 밀도차이에 대한 노이즈 영향)

  • Yang, Won Seok;Son, Jung Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.403-407
    • /
    • 2018
  • Currently, the highest cancer death rate in Korea is lung cancer, which is a typical cancer that is difficult to detect early. Low-dose chest CT is being used for early detection, which has a greater lung cancer diagnosis rate of about three times than regular chest x-ray images. However, low-dose chest CT not only significantly reduces image resolution but also has a weak signal and is sensitive to noise. Also, air filled lungs are low-density organs and the presence of noise can significantly affect early diagnosis of cancer. This study used Visual C++ to set a circle inside a large circle with a density of 2.0, with a density of 1.0, which is the density of water, in which five small circle of mathematics have different densities. Gaussian noise was generated by 1%, 2%, 3%, and 4% respectively to determine the effect of noise on the mean value, the standard deviation value, and the relative noise ratio(SNR). In areas where the density difference between the large and small circles was greatest in the event of 1 % noise, the SNR in the area with the greatest variation in noise was 4.669, and in areas with the lowest density difference, the SNR was 1.183. In addition, the SNR values can be seen to be high if the same results are obtained for both positive and negative densities. Quality was also clearly visible when the density difference was large, and if the noise level was increased, the SNR was reduced to significantly affect the noise. Low-density organs or organs in areas of similar density to cancers, will have significant noise effects, and the effects of density differences on the probability of noise will affect diagnosis.

A Study on the Radiation Dose in Computed Tomographic Examinations (전산화단층촬영 검사의 방사선 선량에 관한 연구)

  • Lim, Chung-Hwang;Cho, Jung-Keun;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2007
  • The purpose of this study is investigation of radiation dose in CT scan. Data were collected from various references and organizations. Doses measured by CT scanners of each medical organization were analyzed and they were calculated through the examination protocol. The results are as follows : 1. $CTDI_W$ value per 100mAs measured by Head Phantom was the highest in <4-slice MDCT scanner> of 24.20 mGy. $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 2. $CTDI_W$ value per 100 mAs measured using body phantom was the highest in <4-slice MDCT scanner> of 13.58 mGy and the $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 3. When contrast medium was not used, the highest scanner was <16 slice MDCT> of $818.83\;mGy{\codt}cm$ in exposure dose in brain scan(p < 0.05). When the contrast medium was used, the highest scanner was <4 slice MDCT> and its average was $1,460.77\;mGy{\cdot}cm$(p < 0.1). 4. When the contrast medium was not used, the highest scanner was <16-slice MDCT> of $521.63\;mGy{\cdot}cm$ on average in terms of the exposure dose in chest inspection(p<0.05). when the contrast medium was used, the highest scanner was found in 8 slice MDCT scanner and its average was $1,174.70\;mGy{\cdot}cm$. There was no statistically significant difference among scanners. 5. When the contrast medium was not used, the highest scanner was <16-slice MDCT> and its average was $856.27\;mGy{\cdot}cm$ in exposure dose on the abdomen-pelvis(p<0.05). when the contrast medium was used, the highest scanner was <16-slice MDCT> and its average was $1,720.64\;mGy{\cdot}cm$ on average (p < 0.05). 6. When the contrast medium was not used, the highest scanner was <8-slice MDCT> and its average was $612.07\;mGy{\cdot}cm$ in exposure dose in liver inspection(p < 0.05). when the contrast medium was used, the highest scanner was <8-slice MDCT scanner> and its average was $2,197.93\;mGy{\cdot}cm$ in exposure dose(p < 0.1). seventy six point two percent of medical facilities were in risk of radiation exposure while the number of phase was three to four times in their dose inspection of contrast medium.

  • PDF

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF