• Title/Summary/Keyword: 휴먼 머신 인터페이스

Search Result 4, Processing Time 0.017 seconds

Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition (사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현)

  • Song, Bok Deuk;Lee, Seung-Hwan;Choi, HongKyw;Kim, Sung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.396-402
    • /
    • 2022
  • User interactions are being developed in various forms, and in particular, interactions using human gestures are being actively studied. Among them, hand gesture recognition is used as a human interface in the field of realistic media based on the 3D Hand Model. The use of interfaces based on hand gesture recognition helps users access media media more easily and conveniently. User interaction using hand gesture recognition should be able to view images by applying fast and accurate hand gesture recognition technology without restrictions on the computer environment. This paper developed a fast and accurate user hand gesture recognition algorithm using the open source media pipe framework and machine learning's k-NN (K-Nearest Neighbor). In addition, in order to minimize the restriction of the computer environment, a stereoscopic image control system based on user hand gesture recognition was designed and implemented using a web service environment capable of Internet service and a docker container, a virtual environment.

A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device (기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템)

  • Hwang, Tae-Hoon;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1423-1429
    • /
    • 2019
  • Recently, a system that supports efficient interaction, a human machine interface (HMI), has become a hot topic. In this paper, we propose a new real time low-cost hand gesture control system as one of vehicle interaction methods. In order to reduce computation time, depth information was acquired using a time-of-flight (TOF) camera because it requires a large amount of computation when detecting hand regions using an RGB camera. In addition, fourier descriptor were used to reduce the learning model. Since the Fourier descriptor uses only a small number of points in the whole image, it is possible to miniaturize the learning model. In order to evaluate the performance of the proposed technique, we compared the speeds of desktop and raspberry pi2. Experimental results show that performance difference between small embedded and desktop is not significant. In the gesture recognition experiment, the recognition rate of 95.16% is confirmed.

Design of Smartfarm Environment Controller Using Fuzzy Control Method and Human Machine Interface for Livestock Building (퍼지 제어법과 HMI를 이용한 축사용 스마트팜 환경 제어기 설계)

  • Byeong-Ro Lee;Ju-Won Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.129-136
    • /
    • 2022
  • The most important part of the smart livestock building system is to maintain a breeding environment so that livestock can grow to high quality despite changes in the internal and external atmospheric environment. Especially, it is very important to maintain the temperature and humidity in the livestock building because various diseases occur during the summer and winter. To manage the environment suitable for livestock, a smartfarm system for livestock building is applied, but it is very expensive. In this study, we propose a hardware design and control method for low cost system based on HMI and fuzzy control. To evaluate the performance of the proposed system, we did a simulation experiment in the atmospheric conditions of summer and winter. As a result, it showed the performance of minimizing the temperature and humidity stress of livestock. And when applied to the livestock building, the proposed system showed stable control performance even in the change of the external atmospheric environment. Therefore, as with these results, if proposed system in this study is applied to the smart farm system, it will be effective in managing the environment of livestock building.