• Title/Summary/Keyword: 휨 강성

Search Result 557, Processing Time 0.02 seconds

Performance Evaluation of Welded Joints for Single-Layer Latticed Domes through Joint Rigidity Test (단층 래티스 돔에 적용 가능한 용접 접합부의 휨실험을 통한 성능 평가)

  • Lee, Young Hak;Seo, Sang Hoon;Kim, Min Sook;Kim, Hee Cheul;Lee, Sung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.601-608
    • /
    • 2008
  • Joints of single-layer latticed domes show various flexural behaviors according to their shapes and connecting methods. Ball joints are relatively easy to apply and build while their rigidities are relatively small and have disadvantage in long span. Welded joints have many advantages in rigidity, internal force and long span. However few experimental studies have been performed. In this paper, improved welded joint for the single layer latticed domes was proposed through both analytical and experimental analyses. Length of inserted plates, thickness of inserted plates and hole of sub steel pipes were selected as parameters for experimental comparisons and defining the effects of the selected variables.

Moment Magnifier Method for Long-Term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.38-45
    • /
    • 2001
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As a result, the creep factor was implemented to describe the creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples were shown for the verification of the proposed design method.

A Parametrical Study on the flexural strength of Concrete-Filled SHS Columns to Composite H-Beam Connections (충전각형강관 기둥-합성 H형강보 접합부 휨성능 결정요인에 관한 연구)

  • Lee, Jong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.385-395
    • /
    • 1999
  • Square hollow section columns and H-section beams have recently been increasing1y used. Rigid column-beam connections cannot be made for the structural system and thus some measures to improve the rotational stiffness of connections should be developed. For this purpose, several types of connections. such as H-section beams connected to concrete-filled square hollow section columns, have been contrived and put to experiment. Since the experimental works are usually difficult and expensive. Particularly test of all the types of connections with similar behavior may not be feasible. Instead, the numerical analysis will be adopted predict the flexural stiffness of connections. In this work, FEM modeling techniques are examined and parametric analysis study has been carried out. The major parameters considered are concrete strength, thickness of steel column, magnitude and eccentricity of axial forces.

  • PDF

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip (부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석)

  • Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load (초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석)

  • Kim, Jin Man;Choe, Eun Hui;Park, Dae Gyu;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.303-312
    • /
    • 2008
  • In this paper, the seismic behavior of shear wal-frame systems is analyzed. The governing equations of the wall-frame systems with outrigger truss are formulated through the continuum approach and the whole structure is idealized as a shear-flexural cantileverwith rotational spring. The effect of shear deformation and flexural deformation of the wall-frame and outrigger trusses are considered and incorporated in the formulation of the wall-frame structures with and without outriggers are compared by using finite element analysis incorporated with the Newmark-${\beta}$ method. Numerical results are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reason ably accurate results in the early design stage of tall building structures.

The Influence of the Application Methods of Direct Analysis Method for the Evaluation of Frame Stability (골조 안정성 평가를 위한 직접해석법의 적용 방법에 따른 영향)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.293-303
    • /
    • 2010
  • The purpose of this study was to evaluate the influence of the methods of application of the direct analysis method, using the load amplification factor suggested by the KBC 2009 design code, for the evaluation of frame stability. For this purpose, the direct analysis method was performed for three-story-one-bay and five-story-three-bay unbraced steel frames with various notional loads, bending stiffness reductions, and factor B2s. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the influence of the applied methods. The scale of the frame, the axial load ratio, and the axial load distribution pattern were added to the main parameters to investigate the external effects. The research results showed that the influence of the methods of application of the direct analysis method is not significant in the case of the required axial strength and the application of the additional notional loads; and that the application of the factor B2 with the story stiffness concept to the direct analysis method is appropriate for the required flexural strength.

Moment Magnifier Method for RC Flat Plate Subject to Combined Axial Compressive and Floor Load (면내 압축력을 받는 플랫 플레이트 슬래브에 대한 모멘트 증대법)

  • Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.243-254
    • /
    • 1999
  • This paper presents a numerical study for developing the moment magnifier method that is applicable to RC flat plates subject to combined axial compressive and floor load. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. The flat plates to be studied are designed in accordance with the Direct Design Method in Korean Building Code for Structural Concrete. This paper proposes the buckling force and the moment magnification factor for the flat plate under the governing load condition that is the combined vertical and subsequently applied uniaxial compressive load. The buckling force is defined with two ingredients: the buckling coefficient and the effective flexural rigidity. Parametric studies are performed to investigate variations of the buckling coefficient and the effective flexural rigidity. Based on the numerical results, this paper provides the design values of the buckling coefficient and the effective flexural rigidity, and the design procedure for the moment magnifier method.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF