• Title/Summary/Keyword: 휨하중

Search Result 1,012, Processing Time 0.03 seconds

Analysis of Deflection of Reinforced Concrete Flexural Members under Monotonic Loading (단조하중을 받는 철근콘크리트 휨부재의 처짐해석)

  • Byun, Keun Joo;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.69-78
    • /
    • 1991
  • This paper concentrates on the analysis of deflection of the reinforced concrete flexural members under monotonic loading. Concrete is treated as an orthotropic nonlinear material. The concept of equivalent strain and crack strain are used to establish independent stress-strain relationships in the directions of orthotropy. Steel is modeled as an elstoplastic material, and von Mises failure criterion is applied. The finite element computer program for the nonlinear analysis of the deflection of RC flexural members under monotonic loading is developed. The accuracy and reliability of the numerical procedure is demonstrated by the FEM analysis and experiments of the under reinforced concrete beams over the entire loading range up to failure.

  • PDF

Development of Finite Element Analysis Program for the Concrete Pavement (유한 요소법에 의한 콘크리트 포장도로의 구조해석 프로그램개발)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • As modern industry go further, a rigid concrete pavement has been widely constructed. The load carrying capacity of the flexible asphalt pavements is brought about by a layered system, distributing the load over the subgrade, rather than by the bending action of the slab. On the other hand, the rigid pavement, because of its rigidity and high modulus of elasticity, tends to distribute the traffic load over wide subbases, and its capacity of the strength is supplied by the slab itself. Thus, it is necessary to study the structural behavior of concrete slab under the variations of temperature changes and applied traffic loads. It reguires the development of finite element analysis program for the concrete highway pavement, which provides better understanding of concrete pavement behavior and effective design data to highway engineers.

  • PDF

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

The Flexural Behavior of a Square Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 각형 탄소섬유 튜브 기둥의 휨거동특성)

  • Kim, Hee-Cheul;Hong, Won-Kee;Lee, Hyun-Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of square concrete filled carbon tube (CFCT) columns subjected to constant axial load with the cyclic lateral load. Two parameters, wnding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of rectangular CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of a rectangular CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of rectangular CFCT columns were evaluated by calculating the area of load-displacement envelope curves and load-dispalcement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment was compared to that of reinforced masonry wall for the comparison of existing structural element.

The Flexural Behavior of a Circular Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 원형 탄소섬유 튜브 기둥의 휨거동특성)

  • Hong, Won-Kee;Kim, Hee-Cheul;Chung, Jin-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of circular concrete filled carbon tube(CFCT) columns subjected to constant axial load with the cyclic lateral load. Six numbers of composite columns were tested. Two parameters, winding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of CFCT columns were evaluated by calculating the area of load-displacement envelop curves and load-displacement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment were compared to that of reinforced masonry wall for the comparison of existing structural element.

Fire Resistance Behavior and Residual Capacity of Voided Slab Subjected to Fire According to Loading Condition (화재 시 하중 재하 조건에 따른 중공슬래브의 내화거동 및 잔존성능)

  • Choi, Hyun-Ki;Bae, Back-Il;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • This study presents experimental investigation on the residual capacity of fire-damaged voided slabs according to loading conditions. In this study, two voided slab specimens were fabricated, and heated by ISO standard fire during 120 minutes with different loading conditions of presence of loading. These specimens were cooled down to room temperature, and the residual capacity of fire-damaged voided slabs was investigated. Based on test results, thermal distribution of voided slab through the depth of concrete sections is different by the loading conditions. The temperature of loaded specimen is rapidly elevated through the whole depth of concrete sections compared to the unloaded specimen. The residual strength of fire-damaged voided slab specimens are 60% and 66% of that of voided slab specimen without fire damage, and the residual stiffness of fire-damaged voided slab specimens decreases by 15%~23% of that of voided slab specimen without fire damage. In case of voided slab specimens subjected ISO standard fire, the loaded specimen shows the decrease of 10% in the residual strength and the decrease of 15% in the residual stiffness compared to the unloaded specimen. It seems to result from higher temperature of bottom reinforcements in the loaded specimen due to the cracks, and more extensive damage on concrete cover of reinforcements by spalling process according to load level.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

Load Resistance Mechanism and Behavior Characteristics of MRS Continuous Joints (MRS 연속단 접합부의 구조상세에 따른 하중저항 메커니즘과 거동 특성)

  • Oh, Young-Hun;Moon, Jeong-Ho;Im, Ju-Hyeuk;Choi, Dong-Sup;Lee, Kang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • The purpose of study is to investigate the load resistance mechanism of MRS continuous joint designed with different details. Six full-scale specimens, which could simulate the negative moment region of the 8 m long MRS system, were prepared to evaluate the structural performance of the continuous joint. According to the experimental results, all specimens which include the specimen with dapped ends designed by loads at the construction stage were failed in a flexural manner and showed the load carrying capacity over the nominal flexural strength. Therefore it is recommended that the dapped ends for MRS continuous joints be designed for the loads of the construction stage. And the shear key, which was installed on the top of rib for MRS slab, helps the enhancement of strength and especially deformation capacity.

Structural Behavior of RC Beams Strengthened with Steel Plates (강판 휨보강된 철근콘크리트보의 구조적 거동)

  • 오병환;조재열;강동옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.233-244
    • /
    • 1997
  • 구조적으로 손상을 입은 구조물들에 대한 보강방법으로 강판, 카본쉬트, 아라미드섬유쉬트 등을 이용한 접착공법이 최근 들어 많이 사용되고 있으며 그 중 가장 널리 Tm이는 방법은 강판접착공법이다. 강판접착공법에 대해서는 많은 연구가 진행되어 오고 있으나, 보의 구조적 거동에 영향을 미치는 다양한 인자들의 영향이나 강성, 파괴양상등에 미치는 영향들에 대해서는 체계적인 평가가 이루어지지 않은 실정이며 특히 강판접착공법에서 파괴에 큰 영향을 미치는 박리하중에 대한 연구는 미흡한 실정이다. 따라서 본 연구에서는 일련의 철근콘크리트보부재를 대상으로 하여 주요실험변수로 선행하중의 크기, 강판의길이, 강판의 두께, 앵커볼트의 간격과 유무, 강판의 층수, 측면보강높이를 실험변수로 하여, 휨인장에 대해 강판잡착공법을 적용하여 포괄적인 실험을 수행하였다. 3등분점하중법의 실험결과를 이용하여 처짐, 인장 및 압축 철근의 변형도, 콘크리트와 강판의 변형도를 분석하였고, 이를 토대로 파괴양상과 파괴하중을 분석하였다.