• Title/Summary/Keyword: 휨좌굴

Search Result 143, Processing Time 0.03 seconds

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

A Investigation on Inelastic Lateral-Torsional Buckling Strength of I-Beam with Load Height Effects (하중고 효과가 비탄성 I형보의 횡-비틀림 좌굴거동에 미치는 영향 고찰)

  • Park, Yi Seul;Yoo, Sang Ryang;Oh, Jeong Jae;Park, Jong Sup
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.155-155
    • /
    • 2011
  • 일반적으로 I형 보에 횡하중이 작용하는 경우, 횡 변위와 함께 회전을 동반하는 횡-비틀림 좌굴(Lateral-Torsional Buckling)이 발생하게 된다. 이러한 I형 보의 탄성 및 비탄성 횡-비틀림 좌굴에 대한 해석적 이론적 연구는 이미 많은 연구자들에 의해 수행되었다(Timoshenko 등, 1961; Galambos, 1963; Lindner, 1974; Trahair, 1993). I형 보의 비지지 길이 내 하중이 작용할 때 모멘트 구배계수(Cb)는 하중이 부재 단면에 작용하는 위치에 따라 달라지게 되는데 이를 하중고 효과(Load Height Effects)라고 한다. 탄성 영역 내 비지지길이가 존재하는 I형 보의 하중고 효과를 고려한 모멘트 구배계수 제안식은 Nethercot & Rockey(1971)에 의해 연구된 바 있다. 또한 Helwig 등(1997)은 Nethercot & Rockey(1971)의 제안식을 간략화 하여 탄성 영역 내 비지지길이가 존재하는 I형 보의 하중고 효과를 고려한 모멘트 구배계수식을 제안하였다. 그러나 현재까지 진행 된 하중고 효과에 대한 연구는 탄성 영역 내 비지지 길이가 존재하는 I형 보에 대한 제안식이며 현재까지 비탄성 영역 내 비지지 길이를 갖는 I형 보의 하중고 효과에 대한 연구는 진행된 바 없다. 본 연구는 비탄성 영역 내 비지지 길이가 존재하는 I형 보의 하중고 효과를 고려한 비탄성 횡-비틀림 좌굴강도에 대한 연구를 수행하였다. 하중조건으로는 집중하중 과 등분포 하중을 적용시켰으며, 비선형 횡-비틀림 좌굴 해석을 위해 잔류응력 및 초기변형을 고려하였다. Pi와 Trahair(1995)이 고려한 단순직선분포를 잔류응력으로 가정하였으며, 국내 I형강 표준 치수 허용치(현대제철, 2006)에 근거하여 부재 길이의 0.1%를 초기 최대 횡 변위로 적용하여 초기제작오차로 고려하였다. 유한요소해석결과를 바탕으로 Nethercot & Rockey(1971)와 Helwig 등(1997)의 연구내용을 바탕으로 범용구조해석 프로그램(ABAQUS, 2007)을 이용하여 비탄성 영역 내 존재하는 I형보의 횡-비틀림 좌굴강도를 산정하였다. 유한요소해석결과를 바탕으로 Nethercot & Rockey(1971)및 Helwig 등(1997)의 모멘트구배계수 제안식과 비교 분석 하였고 회기분석프로그램 MINITAB(2006)을 이용하여 비탄성 영역 내 비지지길이가 존재하는 I형보의 하중고 효과를 고려한 모멘트구배계수식을 개발 제안하였다. 본 연구에서 개발된 제안식은 경제적이고 합리적인 휨부재 강도평가에 적극 활용될 수 있으며, 비탄성 영역내 I형보의 횡-비틀림 좌굴강도 및 휨강도 연구에 널리 활용될 것이다.

  • PDF

An Improved Stability Design of Plane Frames using System Buckling and Second-order Elastic Analysis (탄성좌굴 고유치 및 2차 탄성해석법을 이용한 평면강절프레임의 개선된 좌굴설계법)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2005
  • An improved stability design method for beam-columns of plane frames is proposed based on system buckling analysis and second-order elastic analysis. For this, the tangent stiffness matrix of beam-column elements is first derived using stability functions and a procedure for evaluating effective buckling lengths is reviewed using elastic system buckling analysis. And then the second-order analysis procedure is presented considering $P-\Delta$ effects and is compared with the closed-form solution through numerical examples. Design examples showing the validity of the proposed method we presented and their numerical results are compared with those obtained from the conventional stability design methods. Finally some useful conclusions are drawn.

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Improved Stability Design of Plane Frame Members (평면프레임 구조의 개선된 좌굴설계)

  • Kim, Moon Young;Song, Ju Young;Kyung, Yong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.225-237
    • /
    • 2006
  • Based on the study conducted by Kim et al. (205a, b), an improved stability design method for evaluating the effective buckling lengths of beam-column members is proposed herein, using system elastic/inelastic buckling analysis and second-order elastic analysis. For this purpose, the stress-strain relationship of a column is inversely formulated from the reference load-carrying capacity proposed in design codes, so as to derive the tangent modulus of a column as a function of the slenderness ratio. The tangent stiffness matrix of a beam-column element is formulated using the so-called "stability functions," and elastic/inelastic buckling analysis Effective buckling lengths are then evaluated by extending the basic concept of a single simply-supported column to the individual members as one component of a whole frame structure. Through numerical examples of several structural systems and loading conditions, the possibilities of enhancement in stability design for frame structures are addressed by comparing their numerical results obtained when the present design method is used with those obtained when conventional stability design methods are used.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Buckling Characteristic of Non-Circular Closed Composite Shells (비원형 폐합쉘의 좌굴특성)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • In this study, the buckling loads and mode shapes characteristic of circular and non-circular(elliptical) closed composite shells were analyzed. To analyses the buckling behaviors, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining membrane element with drilling degree-of-freedom and a plate bending element. The combined influences of length, thicknesses, cross-sectional parameters, and fiber-angle on the critical buckling loads and mode shapes of circular and non-circular(elliptical) closed shells are examined.

  • PDF

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

A Study on the Disposition of Cross Beams in Composite Plate Girder Bridge (강합성 플레이트거더교의 가로보 배치에 관한 연구)

  • Park, Yong Myung;Baek, Seung Yong;Hwang, Min Oh
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.691-699
    • /
    • 2002
  • A study on the evaluationof the proper spacing and required bending rigidity of cross beams in composite multiple I-girder bridge without lateral and sway bracing system was performed. For the purpose, a two-lane 40m simple span and 40+50+40m continuous sample bridge with four girders was designed. For the sample bridges, structural analysis under the design loads including dead load before and after composite, live load, and seismic loads has been performed. The material and geometric nonlinear analysis under dead load before composite has also been performed to evaluate lateral buckling strength of the steel-girder-cross beam grillage. Based on the two phase anlayses, proper spacing and bending righidity of cross beams were proposed.