• Title/Summary/Keyword: 휨강성 감소

Search Result 99, Processing Time 0.031 seconds

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate (고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구)

  • Cha, Kyoung-Moon;Choi, So-Yoeng;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • It were found that the heavyweight waste glass can be used as a construction materials including concrete from previous experimental studies. In this study, in order to evaluate the structural behavior of RC members using heavyweight waste glass as fine aggregate, a flexural behavior test was performed. And then, its results were compared with those obtained from non-linear finite element model analysis. From the results, when the heavyweight waste glass as fine aggregate in RC member, the area of compressive crushing and the number of cracks increased, however, the mean of cracking spacing decreased. Also it had reduced the ductility at high loading stage. For this reason, the same analysis method about the RC member using natural sand as fine aggregate did not predict the initial stiffness, yield load and maximum load on the flexural behavior of the RC members using heavyweight waste glass as fine aggregate. On the other hand, when it is analytically implemented the reduction of neutral axis depth due to developed compression crushing, the results of non-linear finite element analysis could be predicted the experimental results, relatively well.

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.

Dynamic Behavior of External Post-tensioned Non-ballast Steel Plate Girder Railway Bridge (외부 후 긴장된 무도상 철도 판형교 동적 거동)

  • Park, Yong Gul;Park, Young Hoon;Choi, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.315-322
    • /
    • 2008
  • The present study applied the external post tensioning reinforcement method for reinforcing a non-ballast steel plate girder railway bridge, and the effects of the strength of tendons and the level of post-tensioning force on the dynamic behavior are experimented and analyzed. According to the results of this study, the natural frequency was increased by the strength of tendons but it was decreased by the rise of post-tensioning force and as a consequence the introduction of post-tensioning force decreased natural frequency slightly. It was analyzed that further study is need to establish the exact relations between post-tensioning force and natural frequency. In addition, it was found that the dynamic displacement, dynamic bending stress and vertical acceleration were decreased by the external post-tensioning. On the other hand, external post-tensioning increased horizontal acceleration by up to 20%, which was around 70% of vertical acceleration. This needs further study.

The Modified Method of Orthotropic Rigidities for Stiffened Plates with Open Ribs (개단면 리브를 갖는 보강판에 대한 직교이방성 강성의 보정 방법)

  • Chu, Seok Beom;Choi, Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.191-200
    • /
    • 2004
  • In this paper, the modified method of orthotropic rigidities for stiffened plates with open ribs is proposed to solve the problem of the inaccurate results of the orthotropic plate analysis according to the dimensions of stiffened plates. In analyzing various types of stiffened plates with open ribs using the isotropic and orthotropic plate element, orthotropic plates are found to gave smaller maximum displacements compared to isotropic plates in a range that is smaller than the special rigidity ratio and reversely. Therefore, obtaining a more accurate solution of the orthotropic plate analysis requires modifying the orthotropic rigidities of stiffened plates according to the rigidity ratio. This study presents two modified methods using the displacement function and the displacement ratio. The application of the two methods improves the accuracy of the results of the orthotropic plate analysis, although the modified method using the displacement ratio is better than the method using the displacement function in terms of serviceability and safety. The comparison with the experimental example shows that the proposed modified method improves accuracy. Therefore, the orthotropic plate analysis of stiffened plates with open ribs can achieve more accurate results using the proposed method in this study.

A Study on Application and Stability Analysis of Spiral Pipe Nailing System (스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the SPN (Spiral Pipe Nailing) system, is developed to self drilling method can apply to ground which is hard to keep shape of bore hole. And limit equilibrium analysis with simplified trial wedge method while length ratio and bond ratio being altered was performed to evaluate slope stability considered of tensile strength and bending stiffness. Also, using $FLAC^{2D}$ program, superiority of the SPN system was compared to the GSN (General Soil Nailing) system about an example section. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. As a result, the SPN system is better than the GSN system in slope stability because of having larger bending stiffness, tensile strength and unit skin friction. And results of simplified trial wedge method are similar to results of TALREN 97 program, commercial limit equilibrium analysis computer software, about an example section. Consequently, it will find out of that the SPN system reduce displacements and settlements in down excavation process as well as to increase the global stability.

  • PDF

Optimum Rigger Locations for Highrise Braced Frames with Facade Riggers (여러 개의 파사드리거를 갖는 고층구조물에서 리거의 최적위치)

  • Jung, Dong-Jo;Yuk, Min-Hye;Lim, Byung-Taeg;Kim, Seok-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Numerical analyses are performed to show the effect of stiffening facade riggers on the behavior of the structure and to investigate the optimum locations of facade riggers. Optimum locations of the facade riggers to minimize the drift at the top of the structure are obtained by maximizing the drift reduction caused by the facade riggers and are significantly influenced by the bending and shear stiffnesses of the braced frame and facade riggers. Three standard load cases of uniformal and triangularly distributed lateral loads as well as a lateral point load at the top of the structure are considered in this paper Optimum locations of facade riggers are plotted as functions of nondimensional relative stiffness parameters ${\omega}$ and ${\beta}$ for structures with one to four riggers. Although the analysis presented herein is based on certain simplifying assumptions, it is believed that the results do provide sufficiently accurate information for determining the optimum locations of facade riggers in highrise structures.

Parametric Study on Lateral Vibration Model of Steel Sheet Pile (강널말뚝의 횡방향 진동모델에 대한 매개변수 연구)

  • Lee, Seung-Hyun;Kim, Byung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1047-1052
    • /
    • 2010
  • Influence of lateral spring constant on energy dissipation and load reduction factor with erespect to lateral vibration of steel sheet pile installed by vibratory pile driver. Energy dissipation and load reduction factor varying with free length of steel sheet pile are more affected by eccentricity than flexural rigidity of steel sheet pile regardless of the magnitudes of lateral spring constants. Load reduction factors were converged when lateral spring constant was equal or larger than 10000N/m.

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.