• Title/Summary/Keyword: 휨강성 감소

Search Result 99, Processing Time 0.027 seconds

The Influence of the Application Methods of Direct Analysis Method for the Evaluation of Frame Stability (골조 안정성 평가를 위한 직접해석법의 적용 방법에 따른 영향)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.293-303
    • /
    • 2010
  • The purpose of this study was to evaluate the influence of the methods of application of the direct analysis method, using the load amplification factor suggested by the KBC 2009 design code, for the evaluation of frame stability. For this purpose, the direct analysis method was performed for three-story-one-bay and five-story-three-bay unbraced steel frames with various notional loads, bending stiffness reductions, and factor B2s. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the influence of the applied methods. The scale of the frame, the axial load ratio, and the axial load distribution pattern were added to the main parameters to investigate the external effects. The research results showed that the influence of the methods of application of the direct analysis method is not significant in the case of the required axial strength and the application of the additional notional loads; and that the application of the factor B2 with the story stiffness concept to the direct analysis method is appropriate for the required flexural strength.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

Flexural Behavior of Dual Concrete Beams Using Fiber Reinforced Concrete at Tensile Parts (섬유보강 고인장강도 콘크리트를 이용한 이중 콘크리트 보의 휨 거동 해석)

  • 박대효;부준성;조백순
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.584-592
    • /
    • 2001
  • The cracks are developed in reinforced concrete(RC) beams at the early stage of service load because of the relatively small tensile strength of concrete. The structural strength and stiffness are decreased by reduction of tensile resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structures and decrease the tensile flexural cracks and deflections. Therefore, the RC beams used of the fiber reinforced concrete at. tensile part ensure the safety and serviceability of the concrete structures. In this work, analytical model of a dual concrete beams composed of the normal strength concrete at compression part and the high tension strength concrete at tensile part is developed by using the equilibrium conditions of forces and compatibility conditions of strains. Three groups of test beams that are formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio are tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the RC beams is increased in approximately 30%. In addition, the flexural rigidity, as used here, referred to the slope of load-deflection curves is increased and the deflection is decreased.

Analysis of Passive Pile Groups Subjected to Lateral Soil Movements-A Study on the Model Test- (측방변형을 받는 수동군말뚝의 거동분석-모형토조실험-)

  • 장서용;원진오;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.239-249
    • /
    • 1999
  • In this study, experimental work has been carried out to investigate the effect of lateral soil movement on passive piles. This paper consists mainly of two parts: the first, performance of a series of laboratory experiments on a single pile and one-row pile groups, and the second, comparison between the measured and the predicted results. In the laboratory experiments, a quadrilateral soil movement profile was imposed on model piles embedded in both sandy soils and weathered soils. The maximum bending moment and pile deflection induced in passive piles were found to be highly dependent on pile stiffness, pile spacing, relative densities and pile head fixity condition. It was shown that the group effect might either increase or decrease the maximum bending moment and pile deflection, depending on the aforementioned influence factors. Based on the results obtained, a spacing-to-diameter ratio of 7.0 seems to be large enough to eliminate the group effect, and a pile in such a case behaves essentially the same as a single pile.

  • PDF

Experimental Investigation of the Flexural Behavior of Lightweight Aggregate Concrete Beams (경량 콘크리트 보의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.441-444
    • /
    • 2010
  • 대공간 구조물과 초고층 빌딩에 있어 건축물의 자중 감소에 대한 요구가 늘어나고 있으며 이에 대한 가장 효과적인 방법 중 하나는 경량 콘크리트를 사용하는 것이다. 본 연구는 최외단 철근의 순인장 변형률에 따른 경량콘크리트 보의 휨 거동 및 휨 성능을 평가하는 것에 그 목적이 있다. 크기와 형상이 동일한 보통중량 콘크리트 보 1개와 경량 콘크리트 보 4개의 총 5개 시험체를 제작하여 최외단 철근의 순인장 변형률을 변수로 실험을 수행하였으며 이를 통해 순인장 변형률에 따른 경량콘크리트 보의 강도와 연성의 변화를 분석하였다. 실험 결과 최외단 철근의 순인장 변형률이 증가할수록 시험체의 연성비는 증가하였으며 최대하중과 강성은 감소하였다. 특히 순인장 변형률 0.005 이상에서 연성지수 2 이상을 확보할 수 있었다.

  • PDF

Estimation of Flexural Rigidity of R/C Beam Strengthened with CFS subjected to repeated loadings (반복하중을 받는 CFS로 보강된 R/C 보의 휨 강성 평가)

  • Kim, Chung-Ho;Jang, Jong-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2004
  • The deterioration of the flexural capacity by progressive crack and over deflection in R/C bridges is developed actually from the dynamic repeated loading due to vehicle traffics. Such a fact suggest a necessities of confirmation and estimation of the data acquired from monotonic incremental loading test. Therefore, this study carry out the monotonic incremental loading test and dynamic repeated loading test in R/C beams strengthened with CFS. By dynamic repeated loading test, the experiments confirmed the validities and fittness of the results acquired from monotonic incremental loading test and estimated the characteristics of the moment-curvature, degradation of the flexural rigidity, crack and failure.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적충보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue life of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the 90-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminates. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[{90}_2/0_2]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.