• Title/Summary/Keyword: 휠

Search Result 906, Processing Time 0.028 seconds

인공위성 반작용휠의 미소진동 측정 및 분석

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2004
  • In this paper, we briefly introduce the micro-vibration test bench of KARI and the test and analysis method of RWA(Reaction Wheel Assembly) micro-vibration. The micro-vibration of RWA is measured on a KISTLER dynamic plate which can measure the time signal of 6 DOF simultaneously up to 400Hz. Measured data are extensively evaluated with respect to the wheel spin rate to identify the complicate wheel dynamic characteristics, and the static/dynamic unbalances are estimated from the extracted first harmonic component as a part of evaluation process. The estimated static and dynamic unbalances. 0.79gcm and 17.4gcm² respectively. The structural resonance mode and two rocking modes observed as a results of its frequency analysis. Several higher order harmonic components observed, which come from its rotor shape as well as the wheel bearing characteristics.

  • PDF

A study on the relationship between acoustic modes in tire-wheel guard space and high frequency road noise (타이어-휠가드 공간의 음장모드와 고주파성 로드노이즈의 상관성 연구)

  • Lee, Jong Hyun;Ku, Yo Cheon;Lee, Jin Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • The space between tire and wheel guard acts as a path for tire pattern noise transmission. In this study, acoustic phenomenon occurring in the tire-wheel guard space is investigated using acoustic mode analysis and visualization of the sound pressure distribution over the wheel guard surface. We introduced a cavity over the wheel guard surface to reduce the tire pattern noise, where the cavity acts as an acoustic damper. The interior noise was reduced by 2 dB(A), and the noise control measures treated in this study may provide an efficient method to improve interior sound quality without increasing cost and weight at the final stage of the vehicle development.

A Study on the Determination of Slot's Number of Rotor to Reduce Noise and Vibration and Design the 3-Phase Induction Motor Considering Kinetic Energy in Flywheel Energy Storage System (운동 에너지를 고려한 Flywheel Energy Storage System 설계와 진동 저감을 위한 3상 유도기의 슬롯수 산정에 관한 연구)

  • Ryu, Jae Ho;Kim, Hui Min;Lee, Chee Woo;Park, Gwan Soo;Jeong, Dong Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Flywheel Energy Storage System (FESS) is composed by flywheel generating rotating potential energy and motor/generator set charging and discharging electric potential energy. The flywheel and motor/generator is connected by rotating shaft. And torque characteristics of motor/generator part can influence charging and mechanical traits of FESS. This paper analyze about motor/generator design method of 5 [kWh] FESS and torque ripple, harmonic effects by change of slots. At First, this paper proposes a method to estimate the flywheel size and the rotor size of the motor from the the rotational kinetic energy by inertia of FESS. The number of induction motor rotor slots for torque ripple reduction in the high speed operation region is selected. This paper performs to reduce the noise and vibration of the flywheel composed of coaxial with motor/generator and flywheel and realize the high efficiency.

A Study on the Design of Wheel for Car on Human Sensibility Analysis (자동차 휠 디자인에 대한 감성 분석 연구)

  • 김희연;나윤선;신강원;윤형건
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.371-380
    • /
    • 2003
  • Modern consumers expect the goods which is sewed more sensitive and emotional satisfaction. It is necessary to apply the knowledge of sensibility analysis to the design of car. The design of wheel for car is regarded as important because consumers want to have unique cars and spend on decorating their cars. This study is to understand the image of consumer's idea about the design of wheel for far through the sensibility analysis that is understood from a part of new design way. According to consumers'needs and emotion, the images of 'harmonious', 'fresh' and 'strong' are representative for the design of wheel for car. The wheel of spoke type stands for the image of 'harmonious', the wheel of mesh type for the image of 'fresh' and the wheel of dish type for the image of 'strong'. Therefore, the emotional image that consumers have of the product is extracted by the sensibility Analysis. In turn, the suggestion of a design direction that satisfies the consumers is possible.

  • PDF

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels (반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2016
  • We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars (자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가)

  • Hong, Jin-Ho;Yoo, Seong-Hwan;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • In this paper, a carbon fiber/epoxy composite-aluminum hybrid wheel for passenger cars was suggested for better performance and a prototype was fabricated and tested. Adhesive bonding between aluminum part and a composite rim part was used, and the bonding length and thickness were determined by finite element analysis. For self alignment and the function of bonding jig the special structure with a groove and a protrusion was applied. To evaluate the performance of the hybrid wheel various FE analyses were carried out. Inner and outer molds were prepared for the composite rim part and the thermoformed composite part was bonded to the aluminum part. Vibration tests revealed that the hybrid wheel had 16% higher resonance frequency and 32% higher damping capacity with 10% weight reduction.

The Implementation of the Speed Measurement Board for the Reaction Wheel on the LEO Satellite using the T, M-Method (T-방식과 M-방식을 이용한 저궤도위성용 반작용 휠의 속도측정보드 설계)

  • Lee, Jae-Nyeung;Park, Sung-Hun;Heu, Su-Jin;Lee, Yun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.827-832
    • /
    • 2012
  • In this paper, we will design the speed measurement board of LEO Satellite's reaction wheel which has two speed measuring methods as M-Method type and T-Method type. therefore we can use the advantage of two methods. and we will verify the availability of design on the on-board computer at the real LEO Satellite(KOMPSAT-3). In the reaction wheels satellite that can change the satellite's attitude is one of the leading drivers by the rotational inertia of the motor will perform attitude control. Reaction methods for detecting wheel rotation speed generated during a certain period T internal reaction wheel tacho pulse counting M-Method to detect wheel speed and wheel tacho pulses are generated by measuring the time between the detection rate can be divided into T-Method. M-method is simple to implement and benefit measurement time is constant, but slow fall in the velocity measurement accuracy is a disadvantage. In contrast, the time between tacho pulses to measure the T-Method to measure the precise speed at low speed and to measure the time delay is small, has the advantage. However, this method also in the actual implementation and the complexity of the operation at different speeds depending on the speed of operation has the disadvantage.

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

Safety Assessment for the 3 Piece Alloy Wheel by Finite Element Method (유한요소법에 의한 3 Piece Alloy Wheel의 안전성 평가)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, En-Chul;Lee, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.885-888
    • /
    • 2009
  • 자동차용 Alloy Wheel은 차량의 수직하중이나 가로 방향 하중, 구동, 제동토크 등 주행 시에 발생하는 여러 형태의 응력을 받으면서 사용되므로 이러한 응력을 견딜 수 있는 강성은 물론 차량 부품으로서의 요구 수명도 만족하여야 한다. 알루미늄 휠은 개발 후 규격에 준하는 내구성 평가를 위하여 반경 방향 부하 내구시험과 굽힘모멘트 내구시험과 주행 중 요철이나 벽돌 등에 의한 노면으로부터 갑작스런 하중에 대한 내충격성 평가를 위한 충격시험이 실행되고 있다. 이러한 시험은 많은 시간이 소요되고 있으며, 또한 시험 중 불합격 판정이 날 경우 또다시 처음의 공정을 모두 거쳐 다시 시험을 하게 된다. 3 Piece와 같은 알루미늄 휠은 여러 공정에 의한 생산되어지기 때문에 많은 시간적, 물질적 손실이 일어나고 있다. 따라서 자동차용 알루미늄 휠의 요구조건을 충분히 만족시키며 소비자의 요구에 맞는 품질과 시간을 충족시켜 기업경쟁력 확보는 물론 원가절감에 의한 기업 경쟁력 향상을 위하여 설계 단계서부터 시험조건을 고려한 내구성 해석에 의한 알루미늄 휠의 시험횟수를 단축하고자 한다. 본 논문에서는 3 Piece 알루미늄 휠의 축(shaft)하중에 의한 내구성 평가에 대하여 CAE시스템을 이용하여 보다 빠르고 정확한 결과를 산출함으로서 설계시간의 단축은 물론 다양한 형상의 제품들을 설계단계에서부터 생산에 이르기까지의 해석활용법을 수립하고자 하였다.

  • PDF

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.