• 제목/요약/키워드: 휘스커

검색결과 102건 처리시간 0.017초

SiC 휘스커 및 TiC 입자 강화 알루미나 복합재료의 기계적 성질과 미세조직 (Mechanical Properties and Microstructures of Alumina Composites Reinforced with SiC Whiskers and TiC Particles)

  • 이영규;김준규;조원승;최상욱
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.792-798
    • /
    • 2000
  • Alumina composites reinforced with SiC whiskers only or combinded with TiC particles were prepared by hot-pressing at 1850$^{\circ}C$ for 1h. The mechanical properties and microstructures of composites were investigated in this study. By of addition either 20 vol% SiC whiskers or 20 vol% TiC particles, the flexural strength fo alumina was increased from 360 MPa to 650 MPa or 730 MPa, respectively, and the KIC was also increased from 3.5 MPa$.$m1/2 to 5.5MPa$.$m1/2 or 4.4MPa$.$m1/2, respectively. In the case of composites with 20 vol% SiC whiskers and 2 vol% TiC particles. The flexural strength and KIC showed relatively high value of 800 MPa and 5.3MPa$.$m1/2, respectively. The improvement of mechanical properties was considered to be due to both the smaller average grain size and the crack deflection.

  • PDF

수열법에 의한 $CaTiO_3$분말 합성 시 광화제와 농도가 입자형상에 미치는 영향 (Effects of mineralizer and concentration on the morphology of the $CaTiO_3$ powders prepared by hydrothermal method)

  • 정항철;서동석;이종국
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.329-334
    • /
    • 2002
  • 아나타제형 $TiO_2$, 분말과 $Ca(OH)_2$ 분말을 출발물질로 하여 광화제로 KOH 및 NaOH를 각각 첨가한 후, 오토클레이브 내에서 수열반응시켜 perovskite구조를 갖는 $CaTiO_3$, 분말을 제조하였다. $CaTiO_3$, 분말 합성 시 광화제의 종류 및 농도에 따른 결정상 변화와 입자 형상 및 크기를 고찰한 결과, 광화제로 1 N KOH 용액을 사용한 경우, 약 0.7$\mu$m 크기의 구형입자가 합성되었고, 10 N KOH 용액을 사용한 경우, 3 $\mu$m 정도의 육면체형 입자로 합성되었다. 광화제인 KOH 농도가 증가함에 따라 구형입자로부터 육면체형 입자로 형상이 변화되었으며, 입자의 크기도 증가하였다. 1 N NaOH 용액을 광화제로 사용한 경우에는 0.5~1 $\mu$m 정도의 구형입자가 합성되었고, 10 N NaOH 용액을 사용한 경우에는 1~4 $\mu$m 정도의 육면체 형상을 갖는 입자와 10$\mu$m 이상인 휘스커형 입자가 혼합된 형상으로 합성되었다. KOH 광화제와 마찬가지로 NaOH 광화제의 농도가 증가함에 따라 육면체 및 휘스커 형상을 갖는 입자로 변화하였으며, 입자의 크기도 아울러 증가하였다. 성분 분석 결과 휘스커 형상의 입자의 경우에는 육면체형 입자에서 관찰된 sodium성분이 검출되지 않았다.

북방산개구리(Rnan dybowskii )유생의 포식자회피 행동에 대한 FNW와 FNW-Ag 복합체의 영향 (Effects of FNW and FNW-Ag on the Antipredator Behavior of Dybowski's Frog (Rana dybowskii) Larvae)

  • 김은지;고원배;한얼;고정원;정훈
    • 한국습지학회지
    • /
    • 제20권3호
    • /
    • pp.272-280
    • /
    • 2018
  • 기존의 독성평가는 생물의 생존가능성에 영향을 줄 수 있는 이상행동반응에 대한 평가를 거의 하지 않았다. 따라서 본 연구에서는 행동학적 이해를 바탕으로 양서류 유생들의 생존가능성과 직결되는 포식자회피반응 행동을 이용하여 fullerene nanowhisker(FNW)와 nanowhisker-silver nanoparticle composites(FNW-Ag복합체)의 독성을 평가해 보았다. 우리는 나노물질에 노출되지 않는 그룹과 5가지 농도에 따른 나노물질에 노출되는 그룹(FNW $10{\mu}g/ml$, $100{\mu}g/ml$, $500{\mu}g/ml$과 FNW-Ag복합체 $10{\mu}g/ml$, $50{\mu}g/ml$)으로 나누어 실험하였다. 그 결과, FNW-Ag복합체 $50{\mu}g/ml$농도에 노출된 유생들을 제외하고는 평소 활동량에는 차이가 없었지만, FNW $10{\mu}g/ml$농도에 노출된 유생들을 제외하고는 모두 포식자인식 반응에 따른 활동변화에서는 통계적으로 유의한 차이가 나타났다. 즉, 나노물질노출 유무는 평소 움직임에는 영향을 주지 않지만, 행동학적 이해를 바탕으로 한 분석결과 포식자회피반응에 영향을 준다는 것을 알 수 있었다. 따라서 생물을 대상으로 하는 독성평가연구에 행동학적 분석이 이루어져야 할 것으로 판단된다.

Al(OH)3-SiO2-AIF3계에서 뮬라이트 휘스커 합성과 열분석 (Synthesis and Thermal Analysis of Mullite Whiskers in Al(OH)3-SiO2-AIF3 System)

  • 이홍림;이영우;이정원;강종봉
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.644-651
    • /
    • 2005
  • The thermal analysis of $Al(OH)_3-SiO_2-AIF_3$ system was done. The thermal behaviors of components and the effect of moisture on the formation of mullite were investigated via TG-DTA and XRD analysis. The mixture of $Al(OH)_3,\;SiO_2,\;AIF_3$showed two endothermic peaks with drastic weight loss and one exothermic peak. Fluorotopaz was formed at $800^{\circ}C$ and turned into mullite completely at $1100^{\circ}C$. But the mixture $Al_2O_3$ of or dehydrated $Al(OH)_3$ and $SiO_2$ could not form mullite even at $1200^{\circ}C$ in which the crystalline phases were $\alpha-Al_2O_3$ ana cristobalite. It was found that the synthesized mullite was aciculate shaped single crystalline whisker.

무윤활 미끄럼 마찰하에서 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성 (The Dry Sliding Wear Properties of $SiC_w$ and $SiC_p$ Reinforced Bronze Matrix Composites)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • 제9권2호
    • /
    • pp.49-55
    • /
    • 1993
  • The dry sliding wear properties of the sintered Cu-10 wt%Sn bronze alloys reinforced with $SiC_w$ and $SiC_p$ were investigated by a pin-on-disc wear testing machine. The worn surfaces and the cross sections of the wear specimens and the wear debris were observed by SEM to study the effect of the variation of the ceramic phase contents in the composite and the wear condition on the wear behaviors. The wear of bronze matrix was dominated by the adhesive wear. The transition from mild to severe wear was found in the bronze matrix specimens at the applied load higher than 20N where the surface delamination caused the severe wear. The addition of $SiC_w$ and $SiC_p$ reinforcements in the romposites was proved to reduce the wear rate by the matrix strengthening at the applied load higher than 20N. SiC whiskers having a large length to diameter ratio which hold the deformed matrix were effective to hinder the crack propagation near the worn surface. Thus the maximum wear resistance was obtained in the composite reinforced by $SiC_w$ at the higher applied load.

SiC 휘스커 강화 Al2O3 복합재료의 고인화 (Toughening of SiC Whisker Reinforced Al2O3 Composite)

  • 김연직;송준희
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성 (High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting)

  • 임석원;유전의칙
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가 (Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker)

  • 김익환;김준규;이환섭;최두진
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

용탕단조법으로 제조된 AZ91 Mg/Al Borate 휘스커 복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Squeeze Cast AZ91 Mg/Al Borate Whisker Composites)

  • 김광천;조영서;이성학;박익민
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.537-549
    • /
    • 1996
  • This study aims at investigating the correlation of microstructure and mechanical properties of the AZ91 Mg/Al borate whisker composites fabricated by squeeze csting technique with a variation of applied pressure. Microstructure observation and in-situ fracture tests were conducted on the composites to identify the microfracture process. Detailed microstructural analyses indicated that the grain refinement could be achieved with applied pressure and the little change in volume fraction on reinforcing whiskers could be carried out. It was also found clearly from in-situ observation of crack initiation and propagation that in the composite processed by the lower applied pressure, microcracks were initiated earily at whisker/matrix interfaces, thereby resulting in the drop in strength. In the composite processed by the higher applied pressure, on the other hand, planar slip lines were well developed in the matrix, and then propagated through whiskers without whisker/matrix decohesion. Thus, the effect of the applied pressure on microstructure and mechanical properties can be explained by grain refinement, increased amounts of reinforcements, and improvement of whisker/matrix interfacial strength as the applied pressure in increased.

  • PDF

탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성 (Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers)

  • 봉하동;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.