Browse > Article
http://dx.doi.org/10.17663/JWR.2018.20.3.272

Effects of FNW and FNW-Ag on the Antipredator Behavior of Dybowski's Frog (Rana dybowskii) Larvae  

Kim, Eunji (Department of Animal Biotechnology and Resource, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Sahmyook University)
Han, Eul (Department of Animal Biotechnology and Resource, Sahmyook University)
Ko, Jeong Won (Department of Convergence Science, Sahmyook University)
Chung, Hoon (Department of Animal Biotechnology and Resource, Sahmyook University)
Publication Information
Journal of Wetlands Research / v.20, no.3, 2018 , pp. 272-280 More about this Journal
Abstract
Existing toxicity assessment researches were rarely studied on assessment of the abnormal behavior that affecting survival. Therefore, the study used anti-predator response of amphibians larvae, based on behavioral understanding, to assess toxicity in fullerene nanowhisker(FNW) and fullerene nanowhisker-silver nanoparticle composites(FNW-Ag). The experiment was conducted by dividing the groups not exposed to nanomaterials and exposed to nanomaterials at five concentrations(FNW: $10{\mu}g/ml$, FNW: $100{\mu}g/ml$, FNW: $500{\mu}g/ml$ FNW-Ag: $10{\mu}g/ml$, FNW: $50{\mu}g/ml$). As a result, there were no differences in normal activity except those exposed to concentrations of FNW-Ag $50{\mu}g/ml$, but there were statistically significant differences in anti-predator response except those exposed to concentrations of FNW $10{\mu}g/ml$. That is, exposed of nanomaterials does not affect ordinary movements, but analyses based on behavioral understandings have shown that it has an influence on the anti-predator response. It is therefore considered necessary to have animal behavioral analysis method performed in the assessment of eco-toxic experiment.
Keywords
Anti-predator response; Behavior toxicity assessment; Fullerene nanowhisker; Fullerene nanowhisker-silver nanoparticle composite; Tadpole;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, H, Zhang, J, Wang, T, Luo, W, Zhou, Q and Jiang, G (2008). Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite, Aquatic toxicology, 89(4), pp. 251-256. [DOI: https://doi.org/10.1016/j.aquatox.2008.07.008]   DOI
2 Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environmental Science & Technology, 40(14), pp. 4346-4352. [DOI: 10.1021/es060589n]   DOI
3 Lovern, SB, Owen, HA and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, 2(1), pp. 43-48. [DOI: https://doi.org/10.1080/17435390801935960]   DOI
4 Gottschalk, F, Sonderer, T, Scholz, RW and Nowack, B (2009). Modeled environmental concentrations of engineered nanomaterials ($TiO_2$, ZnO, Ag, CNT, fullerenes) for different regions, Environmental science & technology, 43(24), pp. 9216-9222. [DOI: 10.1021/es9015553]   DOI
5 Hayes, TB, Falso, P, Gallipeau, S and Stice, M (2010). The cause of global amphibian declines: a developmental endocrinologist's perspective, J. of Experimental Biology, 213(6), pp. 921-933. [DOI: 10.1242/jeb.040865]   DOI
6 Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71(7), pp. 1308-1316. [DOI: https://doi.org/10.1016/j.chemosphere.2007.11.047]   DOI
7 Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration, International journal of pharmaceutics, 105(2), pp. 157-168. [DOI: https://doi.org/10.1016/0378-5173(94)90461-8]   DOI
8 Holomuzki, JR (1995). Oviposition sites and fish-deterrent mechanisms of two stream anurans, Copeia, pp. 607-613. [DOI: 10.2307/1446757]
9 Hu, CW, Li, M, Cui, YB, Li, DS, Chen, J and Yang, LY (2010). Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida, Soil Biology and Biochemistry, 42(4), pp. 586-591. [DOI: https://doi.org/10.1016/j.soilbio.2009.12.007]   DOI
10 Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in vitro, 19(7), pp. 975-983. [DOI: https://doi.org/10.1016/j.tiv.2005.06.034]   DOI
11 Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos, Small, 5(16), pp. 1897-1910. [DOI: 10.1002/smll.200801716]   DOI
12 Broomhall, SD (2002). The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability to predation in Litoria citropa tadpoles, Aquatic Toxicology, 61(3), pp. 243-250. [DOI: https:// doi.org/10.1016/S0166-445X(02)00061-9]   DOI
13 Johansson, BG and Jones, TM (2007). The role of chemical communication in mate choice, Biological Reviews, 82(2), pp. 265-289. [DOI: 10.1111/j.1469-185X.2007.00009.x]
14 Kats, LB and Dill, LM (1998). The scent of death: chemosensory assessment of predation risk by prey animals, Ecoscience, 5(3), pp. 361-394. [DOI: https://doi.org/10.1080/11956860.1998.11682468]   DOI
15 Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicological sciences, 77(2), pp. 347-357. [DOI: https://doi.org/10.1093/ toxsci/kfh019]   DOI
16 Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos, Nanotoxicology, 5(1), pp. 43-54. [DOI: https://doi.org/10.3109/17435390.2010.489207]   DOI
17 Baker, NJ, Bancroft, BA and Garcia, TS (2013). A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians, Science of the total environment, 449, pp. 150-156. [DOI: https://doi.org/10.1016/j.scitotenv. 2013.01.056]   DOI
18 Boone, MD and Bridges‐Britton, CM (2006). Examining multiple sublethal contaminants on the gray treefrog (Hyla versicolor): effects of an insecticide, herbicide, and fertilizer, Environmental Toxicology and Chemistry, 25(12), pp. 3261-3265. [DOI: 10.1897/06-235R.1]   DOI
19 Bronmark, C and Hansson, LA (2000). Chemical communication in aquatic systems: an introduction, Oikos, 88(1), pp. 103-109. [DOI: 10.1034/j.1600-0706. 2000.880112.x]   DOI
20 Broomhall, SD (2004). Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog, J. of Applied Ecology, 41(1), pp. 105-113. [DOI: 10.1111/j.1365-2664.2004.00883.x]   DOI
21 Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments, Nanoscale, 1(1), pp. 138-152. [DOI: 10.1039/B9NR00053D]   DOI
22 Wilson, DJ and Lefcort, H (1993). The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles, Animal Behaviour, 46(5), pp. 1017-1019. [DOI: https://doi.org/10.1006/anbe.1993.1285]   DOI
23 Chivers, DP and Smith, RJF (1998). Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus, Ecoscience, 5(3), pp. 338-352. [DOI: https://doi.org/10.1080/11956860.1998.11682471]   DOI
24 Egea-Serrano, A, Relyea, RA, Tejedo, M and Torralva, M (2012). Understanding of the impact of chemicals on amphibians: a meta‐analytic review, Ecology and evolution, 2(7), pp. 1382-1397. [DOI: 10.1002/ece3.249]   DOI
25 Fabian, NJ, Albright, LB, Gerlach, G, Fisher, HS and Rosenthal, GG (2007). Humic acid interferes with species recognition in zebrafish (Danio rerio), J. of chemical ecology, 33(11), pp. 2090-2096. [DOI: https://doi.org/10.1007/s10886-007-9377-z]   DOI
26 Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles, Nanotoxicology, 7(1), pp. 37-47. [DOI: https://doi.org/10.3109/17435390.2011.626566]   DOI
27 Waissi-Leinonen, GC, Petersen, EJ, Pakarinen, K, Akkanen, J, Leppanen, MT and Kukkonen, JV (2012). Toxicity of fullerene ($C_{60}$) to sediment‐dwelling invertebrate Chironomus riparius larvae, Environmental Toxicology and Chemistry, 31(9), pp. 2108-2116. [DOI:10.1002/etc.1926]   DOI
28 Wolf, MC and Moore, PA (2002). Effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus, J. of the North American Benthological Society, 21(3), pp. 457-467. [DOI: https://doi.org/10.2307/1468482]   DOI
29 Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish, Small, 6(20), pp. 2261-2265. [DOI: 10.1002/smll.201000989]   DOI
30 Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of $CeO_2$ nanoparticles using two aquatic microorganisms, Toxicological Sciences, 119(1), pp. 135-145. [DOI: https://doi.org/10.1093/toxsci/kfq311]   DOI
31 Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquatic Toxicology, 100(2), pp. 178-186. [DOI: https://doi.org/10.1016/j.aquatox.2010.03.001]   DOI
32 Seehausen, O, Van Alphen, JJ and Witte, F (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection, Science, 277(5333), pp. 1808-1811. [DOI:10.1126/science.277.5333.1808]   DOI
33 Stauffer, HP and Semlitsch, RD (1993). Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles, Animal Behaviour, 46(2), pp. 355-364. [DOI: https://doi.org/10.1006/anbe.1993.1197]   DOI
34 Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp. pp. 167-174. [DOI: https://doi.org/10.1016/j.cbpc.2009.10.002]   DOI
35 Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis, Marine environmental research, 66(1), pp. 131-133. [DOI: https://doi.org/10.1016/j.marenvres.2008.02.044]   DOI
36 Tervonen, K, Waissi, G, Petersen, EJ, Akkanen, J and Kukkonen, JV (2010). Analysis of fullerene‐$C_{60}$ and kinetic measurements for its accumulation and depuration in Daphnia magna, Environmental Toxicology and Chemistry, 29(5), pp. 1072-1078. [DOI: 10.1002/etc.124]   DOI
37 Thostenson, ET, Ren, Z and Chou, TW (2001). Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology, 61(13), pp. 1899-1912. [DOI: https://doi.org/10.1016/S0266-3538(01)00094-X]   DOI
38 Troyer, RR and Turner, AM (2015). Chemosensory perception of predators by larval amphibians depends on water quality, PloS one, 10(6), pp. e0131516. [DOI: https://doi.org/10.1371/journal.pone.0131516]   DOI
39 Petersen, EJ and Henry, TB (2012). Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review, Environmental Toxicology and Chemistry, 31(1), pp. 60-72. [DOI: 10.1002/etc.710]   DOI
40 Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes, Nanotoxicology, 6(2), pp. 109-120. [DOI: https://doi.org/10.3109/17435390.2011.562325]   DOI
41 Raimondo, SM, Rowe, CL and Congdon, JD (1998). Exposure to coal ash impacts swimming performance and predator avoidance in larval bullfrogs (Rana catesbeiana), J. of Herpetology, 32(2), pp. 289-292. [DOI: 10.2307/1565313]   DOI
42 Relyea, RA (2003). Predator cues and pesticides: a double dose of danger for amphibians, Ecological Applications, 13(6), pp. 1515-1521. [DOI: 10.1890/02-5298]   DOI
43 Relyea, RA (2005). The lethal impacts of Roundup and predatory stress on six species of North American tadpoles, Archives of Environmental Contamination and Toxicology, 48(3), pp. 351-357. [DOI: https://doi.org/10.1007/s00244-004-0086-0]   DOI
44 Relyea, RA and Mills, N (2001). Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor), Proceedings of the National Academy of Sciences, 98(5), pp. 2491-2496. [DOI: 10.1073/pnas.031076198]
45 Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold bulletin, 41(2), pp. 116-126. [DOI: https://doi.org/10.1007/BF03216589]   DOI
46 Gosner, KL (1960). A simplified table for staging anuran embryos and larvae with notes on identification, Herpetologica, 16(3), pp. 183-190.
47 Ferrari, MC and Chivers, DP (2009). Temporal variability, threat sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behavior, Animal Behaviour, 78(1), pp. 11-16. [DOI: https://doi.org/10.1016/j.anbehav.2009.03.016]   DOI
48 FraseR, TW, Reinardy, HC, Shaw, BJ, Henry, TB and Handy, RD (2011). Dietary toxicity of single-walled carbon nanotubes and fullerenes ($C_{60}$) in rainbow trout (Oncorhynchus mykiss), Nanotoxicology, 5(1), pp. 98-108. [DOI: https://doi.org/10.3109/17435390.2010.502978]   DOI
49 Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time, Nanotoxicology, 6(2), pp. 144-160. [DOI: https://doi.org/10.3109/17435390.2011.562328]   DOI
50 Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp. 269-274. [DOI: https://doi.org/10.1016/j.cbpc.2011.09.006]   DOI
51 Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure, Nanotoxicology, 6(7), pp. 691-699. [DOI: https://doi.org/10.3109/17435390.2011.604440]   DOI
52 Lurling, M (2012). Infodisruption: pollutants interfering with the natural chemical information conveyance in aquatic systems. Chemical Ecology in Aquatic Systems, C Bronmark and L-A Hansson (eds.) Oxford university press, New York, pp. 250-271.
53 Mandrillon, AL and Saglio, P (2007). Herbicide exposure affects the chemical recognition of a non native predator in common toad tadpoles (Bufo bufo), Chemoecology, 17(1), pp. 31-36. [DOI: https://doi.org/10.1007/s00049-006-0354-8]   DOI
54 Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, $C_{60}$) induce oxidative stress in the brain of juvenile largemouth bass, Environmental health perspectives, pp. 1058-1062. [DOI: 10.1289/ehp.7021]
55 Ortiz-Santaliestra, ME, Marco, A and Lizana, M (2011). Realistic levels of a fertilizer impair Iberian newt embryonic development, Herpetologica, 67(1), pp. 1-9. [DOI: https://doi.org/10.1655/HERPETOLOGICA-D-10-0001.1]   DOI
56 Pakarinen, K, Petersen, EJ, Leppanen, MT, Akkanen, J and Kukkonen, JVK (2011). Adverse effects of fullerenes (nC 60) spiked to sediments on Lumbriculus variegatus (Oligochaeta), Environmental pollution, 159(12), pp. 3750-3756. [DOI: https://doi.org/10.1016/j.envpol.2011.07.014]   DOI
57 Lee, JH, Park, BE, Lee, YM, Hwang, SH and Ko, WB (2009). Synthesis of fullerene [$C_{60}$]-silver nanoparticles using various non-ionic surfactants under microwave irradiation, Current Applied Physics, 9(2), pp. e152-e156. [DOI: https://doi.org/10.1016/j.cap.2008.12.048]   DOI
58 Kiesecker, JM, Chivers, DP and Blaustein, AR (1996). The use of chemical cues in predator recognition by western toad tadpoles, Animal Behaviour, 52(6), pp. 1237-1245. [DOI: https://doi.org/10.1006/anbe.1996.0271]   DOI
59 Kim, EJ, Ko, WB, Han, E, Kim, HJ, Ko, JW and Chung, H (2015). Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii, J. of Wetlands Research, 17(4), pp. 407-413. [DOI: 10.17663/JWR.2015.17.4.407]   DOI
60 Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Casrtamova, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells, J. of Toxicology and Environmental Health, Part A, 70(24), pp. 2071-2079. [DOI: https://doi.org/10.1080/15287390701601251]   DOI
61 Lefcort, H, Meguire, RA, Wilson, LH and Ettinger, WF (1998). Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles, Archives of Environmental Contamination and Toxicology, 35(3), pp. 447-456. [DOI: https://doi.org/10.1007/s002449900401]   DOI