• Title/Summary/Keyword: 휘산

Search Result 63, Processing Time 0.023 seconds

Ammonia Emission during Postive Aeration on Composting Dairy Manure Amended with Rice Hulls (우분과 왕겨혼합물의 송풍식 통기 퇴비화 과정 중 암모니아 휘산 실험)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.55-60
    • /
    • 1999
  • 퇴비호 과정중에 암모니아 휘산은 퇴비 내의 질소성분을 유출시키고 있는 동시에 악취를 발생한다는 측면에서 바람직하지 못하다. 아직까지 암모니아 휘산을 방지할 수 있는 방법은 개발되어 있지 않다. 본 연구에서는 퇴비화 과정에서 온도, 암모니아휘산및 엔탈피의 변화를 분석하였다. 퇴비화 온도가 높을 때는 암모니아 휘산도 많이 발생하였으나 퇴비화 15일 후 온도가 63$^{\circ}C$로 하강함에 따라 암모니아 휘산은 줄어들기 시작하여 온도가 6$0^{\circ}C$이하로 떨어지는 21일부터는 거의 발생하지 않았다. 퇴비화 온도에 의하여 진행과정과 암모니아 휘산의 추이를 추정할 수있었다.

  • PDF

Factors Controlling the Losses of Urea through Ammonia Volatilization (암모니아 휘산에 의한 요소비료의 손실에 미치는 요인)

  • Kim, Su-Jung;Yang, Jae E.;Cho, Byong-Ok;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.

Volatilization of Amnonia from Flooded Soils Applied with Different Nitrogen Sources (질소질비료(窒素質肥料)가 시용(施用)된 담수토양(湛水土壤)에서의 암모니아의 휘산(揮散))

  • Oh, Wang-Keun;Oh, Jae-Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 1981
  • The ammonia volatilization from two different soils, an acidic normal soil and a neutral tidal soil applied with different nitrogen sources was investigated through a laboratory incubation experiment conducted at about $30^{\circ}C$ for 18 days. Results obtained were summerized as follows; 1. The ammonia volatilizat ion was increased by the urea application that increased soil pH. 2. Ammonium sulfate and ammonium chloride did not raise reduced soil pH over 7.30 and showed little ammonia volatilization keeping the $pK_b$ value of 4.72-3 3. An organic fertilizer (Miweon Co. made) raised pH of the tidal land soil little more than ammonium sulfate or ammonium chloride ; however, it did not increase the ammonia volatilization as much as from other fertilizer treatment plots of the same pH, which may mean that the organic fertilizer is effective in reducing ammonia volatilization. 4. It seemed that easier volatilization of ammonia from urea may occor in ordinary soil low in original pH than from tidal soil by the application of urea which may mean that if the pH of soils are the same, greater volatilization would result from the former than the latter. 5. Application of raw straw to tidal soil lowed pH and reduced ammonia volatilization.

  • PDF

Ammonia Emissions during Composting of Hog Manure Using the Positive Aeration (강제통기식 돈분 퇴비화 과정의 암모니아 휘산)

  • 홍지형;박금주
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.124-129
    • /
    • 1999
  • 지난 몇 십년간 생물계 폐기물 호기성 처리의 경제적이고 실용적인 공법으로 가축분뇨처리에 적용되어온 유기성 폐자원의 호기성 분해공정은 축산환경 보전, 지력증강 자원의 고갈 및 지구온난화문제 등에 의해서 더욱 주목받아 오고 있다. 특히, 기존의 호기성 고형폐기물 처리시설에서 저투입, 고효율의 처리시설을 개발하여 보다 많은 숙성퇴비를 얻을 수 있는 통기퇴적식 퇴비화 시설은 강제통풍 통기방식으로 호기성 미생물의 분해시간을 단축하고 암모니아가스 휘산을 저감하는 등의 탁월한 처리효율을 나타내었다(Brinton et al., 1995). (중략)

  • PDF

Residual properties of ethoprophos with treatment methods in sweet pepper under greenhouse condition (착색단고추 시설재배시 에토프 입제의 처리방법별 잔류특성)

  • Kim, Jin-Bae;Song, Byung-Hun;Lee, Soo-Hyung;Nam, Hong-Shik;Son, Kyung-Ae
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2004
  • Two experiments were carried out in greenhouse under hydrophilic culture facilities and simulation model to provide residual characteristics of ethoprophos treated in sweet pepper's growth. To identify the pattern of absorption-translocation through the plant roots, ethoph 5 % GR were diluted in hydrophilic culture solution and drenched at a time per day for three days. The residue in fruit came closed to 0.02 ppm of MRL at 10 days after treatment(DAT) and reached peaked 0.06 ppm at 30 DAT and remained excess MRL level until around 40 DAT. To confirm the pattern of contamination by volatilization of ethoprophos, ethoph 5%GR was scattered 2 g per cubic meter. At 72 hours after treatment, the residue in sweet pepper fruit was exceed the MRL and the maximum residual amount were 0.62 ppm by volatilization. Consequently the use of ethoprophos during the growth of sweet pepper would be strong possibility to exceed the MRL.

The Role of Organic Amendments with Different Biodegradability in Ammonia Volatilization during Composting of Cattle Manure (우분뇨 퇴비화 중 암모니아 휘산에 대한 이분해성 및 난분해성 유기 첨가물의 역할)

  • Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kwak, Jin-Hyeob;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • This study was conducted to investigate the roles of co-existed organic materials (OM) with different biodegradability in composting of cattle manure in terms of $CO_2$ emission and $NH_3$ volatilization. Either sawdust (SD, low biodegradability) or rice bran (RB, high biodegradability) was mixed with cattle manure at a various rate and the amounts of $CO_2$ emission and $NH_3$ volatilization were determined periodically during 4 weeks of composting. Percentage of dry matter loss during the composting period was also calculated. The amount of $CO_2$ emitted increased with increasing rate of OM and was significantly (P<0.01) higher in the RB treatment than in the SD treatment by 43 to 122% depending on the rate of OM Accordingly, % of dry matter loss during 4 weeks of composting was higher in the RB (rang: from 35.1 % to 41.5%) than that in the SD treatments (from 18.7% to 22.6%), showing that RB is more biodegradable than SD. During the early composting period up to 8 days, negligible amount of ammonia volatilization was detected in both treatments regardless of application rates. In the RB treatment, substantial amount of ammonia volatilization was detected thereafter, however, no meaningful ammonia volatilization was observed in the SD treatment until the end of composting. Such differences could be attributed to the different properties of SD and RB. For example, the high C/N ratio of SD could enhance $NH_4^+$ immobilization and thus decrease $NH_4^+$ concentration that is susceptible to ammonia volatilization. Binding of $NH_4^+$ on to phenolic compounds of SD may also contribute to the decrease in $NH_4^+$ concentration. Meanwhile, as RB has a relatively low C/N ratio, remineralization of immobilized $NH_4^+$ could increase $NH_4^+$ concentration as high as the level for the occurrence of ammonia volatilization. Therefore, our study suggests that OM which is resistant to biodegradation can reduce $NH_3$ volatilization largely by physico-chemical pathways across the entire composting period and that easily biodegradable OM can retard $NH_3$ volatilzation via microbial immobilization in the early period of composting followed by rapid remineralization, leading to substantial volatilization of $NH_3$ in the middle stage of composting.

Phytotoxic Response of Some Fruit Trees to Oxyfluorfen (Oxyfluorfen 처리(處理)에 따른 과수종(果樹種) 및 품종간(品種間)의 약해반응(藥害反應))

  • Cho, Y.W.;Pyon, J.K.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.337-347
    • /
    • 1987
  • Spary and vapor drift injuries of apple, pear, and peach seedling caused by soil-applied oxyfluorfen were studied in a greenhouse. Bud bursting rate of all fruit trees was reduced by both spray and vapor drifts of oxyfluorfen, but reduction in bud bursting rate of pear and peach was greater than that of apple trees. Reduction in the number of leaves per shoot of apple and peach was greater than that of pear trees. Leaf injury of pear was most severe and occurred earliest, but leaves of peach were least injured, Leaf injuries of pear and apple were caused by both spray and vapor drifts, but leaves of peach was injured largely by vapor drift. Reduction in shoot growth of and pear was greater than that of peach trees. Shoot growth of pear was more rapidly retared compared with apple trees. In the field, oxyfluorfen delayed the time of bud bursting in young apple trees. Oxyfluorfen applied between initiation and completion of bud bursting delayed bud bursting more than earlier application although ultimate number of bursted buds was similar to control. The number of leaves per shoot and total length of shoots were lower than control until 40 days after application of oxyfluorfen, and then were similar to control because of vigorous growth after May.

  • PDF

Effect of Diazinon Application on Ammonia Volatilization in Submerged Incubation Soil (담수항온 처리토양에서 diazinon 처리가 암모니아 휘산에 미치는 영향)

  • Han, Kang-Wan;Cho, Jae-Young;You, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.328-333
    • /
    • 1997
  • A study was conducted to examine the effect of application of Diazinon at different rates in submerged soil under the application of different N fertilizers; urea, ammonium sulfate and organic fertilizer(fermented chicken dung-sawdust mixture). The levels of Diazinon application were equivalent to zero, 350 mg a. i./ha, 700 mg a. i./ha and 1050 mg a. i./ha. To 100 gr of air-dry soil, 10 mg of N, $P_2O_5$ and $K_2O$ and different levels of Diazinon were mixed thoroughly and the soil was submerged in 100 ml of distilled water. The submerged soil was incubated at $30^{\circ}C$ for 50 days. Volatilied ammonia was measured at every 10 days. The amount of ammonia volatilization was greatest in urea treated soil, followed by organic fertilizer and it was the least in ammonium sulfate treated soil. The application of Diazinon at 700 mg a. i./ha increased the volatilization of ammonia greatly in the urea treated soil. Under other fertilizers, the effect of Diazinon application was not remarkable. The increase in the soil pH during the incubation period under different fertilizer treatments tended to increase ammonia volatilization.

  • PDF

Effects of Different Potassium Sources on the Ammonia Volatilization from Soils under Flooded Condition (가리(加里)의 시용(施用)이 담수토양(湛水土壤)에서 암모니아의 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 1981
  • The effects of potassium chloride and potassium sulphate on the volatilization of ammonia from acidic clayloam and tidal sandy clay loam soils applied with urea under flooded conditions were studied in a laboratory experiment. Results obtained were as follows; 1. The application of potassium to the acidic soil promoted the volatilization of ammonia through increasing soil pH. 2. The application of potassium to urea treated on the tidal soil which lead pH over 8.0 under flooded reduced conditions decreased the wet soil pH and reduced the volatilization of ammonia from the soil. These effects of potassium were more pronounced in the potassium sulphate treatment than in the potassium chloride. 3. More ammonia was volatilized from the acidic soil applied with potassium sulphate, however, the effects of potassium fertilizers applied to the high pH tidal soil seemed to be masked by high salt content of the soil. 4. Urea brought up soil pH significantly. Potassium sulphate was more effective than potassium chloride in raising pH of the acidic soil, though the reverse could be true in the tidal soil with high pH. The reduction of sulphate might be a major cause for the pH change.

  • PDF

A Study on the Volatilization of Ammonia from Flooded Soils Mixed with Rice Straw and Liming Materials (담수토양(湛水土壤)에서 볏짚과 석회물질(石灰物質) 시용(施用)이 암모니아 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Hwang, Kwang-Nam;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 1982
  • A laboratiory experiment incubated at about $30^{\circ}C$ for 34 days was conducted in order to learn the effect of liming materials and rice straw on the volatilization of ammonia from flooded soils applied with urea. 1. The application of calcium hydroxide and calcium silicate increased buffer action of flood soil, though it resulted in increase in the volatilization of ammonia through raising flooded soil pH containing bicarbonate. 2. The mixing of rice straw powder to soil lowered pH of flooded soil, and decreased the volatilization of ammonia. The effect was particulary large when noliming material was used. 3. Calcium hydroxide depressed the evolution of $CO_2$ in the early days of incubation after flooding, while calcium silicate promoted the ammonification of soil nitrogen from the begining of flooding giving slow change in soil chemical properties. The rice straw was also effective in providing a favorable soil condition for the ammonification rather quickly.

  • PDF