• Title/Summary/Keyword: 후판 실린더

Search Result 2, Processing Time 0.013 seconds

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

Acoustic Radiation from the Modal Vibrations of a Thick, Finite Cylinder with Various Boundary Conditions (다양한 경계조건을 가진 유한 길이 후판 실린더의 고유진동에 의한 소음방사에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.585-596
    • /
    • 2013
  • This study introduces a hybrid approach combining numerical results with pre-developed analytical calculations for the sound radiation from the modal vibration of a thick, finite length cylinder with various boundary conditions. Structural vibrations of the cylinder are numerically investigated with the finite element method, and distributions of vibratory displacements on the cylinder surface are idealized as simple mathematical expressions based on the numerical results. Sound radiations from the normal vibration of the cylinder are calculated based on idealized modal displacements using a previously introduced theoretical solution. The results are confirmed with numerical analyses using the boundary element method. Based on these results, it can be concluded that the solutions suggested in this study have good accuracies in calculating the vibro-acoustic properties of a thick, finite cylinder with various boundary conditions. Also, the sound radiation characteristics of many practical components such as brake drums and motor housings are expected to be investigated using the procedure proposed in this study.