• Title/Summary/Keyword: 후리에어-이상

Search Result 11, Processing Time 0.016 seconds

Free-air gravity anomaly analysis using ERS-1 Altimeter (ERS-1 Altimeter를 이용한 필리핀 지역의 중력이상 분석)

  • 박상은;강성철;이태희;문우일
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.55-60
    • /
    • 2000
  • 인공위성의 Radar Altimeter 자료를 통해 국지적인 중력이상을 조사하기 위하여 ERS-1 Altimeter를 이용하였다. ERS-1 Radar Altimeter는 조밀하게 인접한 데이터 간격(~8km)을 갖고 있어서 전지구적 규모뿐만 아니라 국지적인 연구에도 적합하다. 연구대상지역은 세 개의 판이 만나서 지진과 화산활동이 활발하게 진행되는 필리핀판 지역(동경1$10^{\circ}$~150$^{\circ}$, 북위 0$^{\circ}$~30$^{\circ}$)을 선정하였다. 이 지역에 대한 해저의 지형과 중력 이상 분석을 통해 판구조 운동의 여러 증거를 파악할 수 있다. ERS-1 Radar Altimeter를 통해 얻어진 지오이드 높이(Geoid geight)는 후리-에어 중력이상(Free-air gravity anomaly)으로 쉽게 전환시킬 수 있다. 본 연구에서는 Fast Fourier Transform(FFT)을 이용하여 지오이드기복을 직접 후리-에어 중력이상으로 전환시키는 Direct conversion method를 사용하였다. 후리-에어 중력이상은 지각평형과 직접적으로 연관되어 지각보상의 정도를 파악할 수 있게 하며 일반적으로 해양의 분지는 지각평형상태로 있어서 평균적인 중력이상은 0mgal 근처로 나타난다. 그러나 본 연구에서 살펴본 국지적인 후리-에어 중력이상은 판구조론과 관련한 해구난 호상열도에서는 해양분지에서의 평균적인 값과 다른 중력이상의 양상을 나타내었다.

  • PDF

Geological and Geophysical Characteristics of the New Hebrides Basin (뉴헤브리디스 해분의 지질.지구물리학적 특징에 관한 연구)

  • Park, Chung-Hwa
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.559-564
    • /
    • 1997
  • The New Hebrides Basin is an inactive non back-arc basin located at the convergent boundary of the Pacific and Info-Australian plates. This basin was formed from 46 Ma to 60 Ma. The basin has two spreading episodes with rates of 34 mm/a for 42 to 47 Ma and 17 mm/a for 47 to 60 Ma. The sediments covered in the basin has uniform thickness of 0.65 sec. The age-depth correlation curve of the New Hebrides Basin can be represented by the following equation: $Depth(m)=2689+312\sqrt{Age}(Ma)$ The coefficient of 312 in this equation is close to that for major oceans, 350. This suggests that the cooling processes of the lithospheres in the New Hebrides Basin and major oceans are similar to each other. Free-air gravity anomalies of the basin varying from -22.3 mgal to +59.0 mgal. The mean value is +30.2 mgal higher than those of the normal oceans. Moderately large free-air gravity anomalies in the New Hebrides Basin are presumably owing to its location on a marginal swell along the New Hebrides Trench. It is generally observed that the ocean floor is very gently uplifted in a zone about 200 km oceanward of the trench axis. Positive free-air gravity anomalies amounting to $50{\sim}60$ mgal are usually observed on the crest of the swell. This topography is presumably by bending of the oceanic lithosphere so as to dynamically maintain nonisostatic states for some duration.

  • PDF

Marine Geophysical Constraints on the Origin and Evolution of Ulleung Basin and the Seamounts in the East Sea (울릉분지와 동해 해산의 기원과 발달과정에 대한 해양지구물리학적 연구)

  • Kim Jinho;Park Soo-chul;Kang Moo-hee;Kim Kyong-O;Han Hyun-chul
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.643-656
    • /
    • 2005
  • The East Sea, a marginal sea or back-arc basin, consists of Japan Basin, Yamato Basin, and Ulleung Basin and is surrounded by the Pacific Plate and Philippine Sea Plate. Ulleung Basin locates in the southwestern part of the East Sea and shows the depth of 1,500 m in average and 2,500 m in maximum, connecting to the Japan Basin along 2,000 m contour. The slope of the seafloor is greater in the western side of the basin than in the southern and the eastern side. The crustal thickness of the Ulleung Basin from the OBS tends to get thicker toward the north and the west side and the sediment thickness of the Ulleung Basin is getting thicker toward the southeast side and reaches up to 12 km. The crustal type of the Ulleung Basin was variously suggested as like as a rifted continental crust, an extended continental crust, and an incipient oceanic trust. The origin of the crustal formation and the Ulleung Basin, however, is still controversial. Based on the bathymetry and gravtiy anomaly data for this study, the axis of the Ulleung Basin shows that the basin develops along the axis trending NW-SE direction and reveals a general symmetry of the bathymetry. And also the free-air gravity anomalies show a very similar pattern to the bathymetry of the basin. The sediment thickness is relatively thicker in the southeastern side of the basin than in the northwestern side. Although the crustal age of the Ulleung Basin is supposed to be younger than them of the Japan Basin and the Yamato Basin, the free-air gravity anomalies of the Ulleung Basin ranging -40 to 50 mGals are lower than the other basins, which suggests that the densities of crust and sediment of the Ulleng Basin are lower than the Japan Basin and the Yamato Basin.

High Resolution Gravity Mapping and Its Interpretation from both Shipborne and Satellite Gravity Data in the Ulleung Basin (울릉분지에서의 선상중력과 위성중력 통합에 의한 중력 해상도 향상 및 해석)

  • Park, Chan Hong;Kim, Jeong U;Heo, Sik;Won, Jung Seon;Seok, Bong Chul;Yu, Hae Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • The errors between track segments or at the cross-over points of shipborne gravity were successfully reduced by applying a cross-over error adjustment technique using satellite gravity. The integration of shipborne and satellite altimeter-implied free-air gravity anomalies after the cross-over error adjustment resulted in a high resolution gravity map which contains both short and long wavelength components. The successful adjustment of the cross-over errors in the shipborne gravity using the satellite gravity suggests that the shipborne gravity can be combined with the satellite anomalies characterized by a stable and long wavelength component. The resulting free-air anomaly map is evenly harmonized with both short and long wavelength anomalies. Thus the corrected anomaly map can be better used for the geological interpretation. Free-air anomalies with more than 140 mGal in total variations generally correspond to the seafloor topographic changes in their regional patterns. A series of gravity highs are aligned from the Korea Plateau to the Oki Island, which are interpreted to be caused by seamounts or volcanic topographies. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably responsible for the thin crust and shallow seated mantle. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably suggestive of a thin crust and shallow seated mantle.

  • PDF

중력이상을 이용한 한반도 모호면 추출에 관한 연구

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;황종선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.258-264
    • /
    • 2003
  • 중력이상 및 수치고도모델을 이용하여 한반도 모호면 심도를 추출하였다 중력이상값은 인공위성고도레이더 관폭값을 주로 이용한 전지구 모델을 이용하여 데이터영역 뿐 만 아니라 주파수영역에서도 자료의 균질성을 확보하였다. 모호면 추출은 Kim et al. [2000a]에 의해 제안된 스펙트럼 대비법 및 후리에급수를 이용한 파워스펙트럼분석법을 이용하였다. 전자는 지각근형을 전제로, 지형에 의한 중력효과와 후리에어 중력이상을 파동수영역에서 대비하여 모호면의 심도를 계산하는 방법이고, 후자는 완전부우게 중력이상으로부터 푸리에변환을 이용하여 지하 밀도 변화층의 심도를 계산하는 방법이다. 이 두 모호면은 서로 0.53의 상관관계를 갖고 있으며, 이는 모호면 산출의 방법론적인 차이 및 계산상의 오차인 것으로 사료된다. 이렇게 두 가지 독립적인 방법으로 추출된 모호면을 하나로 통합하기 위한 한 방법으로, 두 모호면의 차이를 계산한 후, 이를 최소자승법을 이용, 두 모호면을 보정하였다. 결과적으로 한반도의 최종 모호면의 평균심도는 32.0km, 표준편차는 2.5km 이며, 최소, 최대 심도는 20.3, 36.6km으로 나타났다. 이 경우 지형에 의한 중력효과는 스펙트럼대비법에 의해 제거된 결과이나, 한반도의 지각이 완전한 지각판 내에 놓여 있어서 Airy-Heiskanin 지각균형설의 가정이 타당성이 있는가, 혹은 국부적인 응력장에 의해 한반도의 지각이 과연 얼마나 지지되고 있는가 하는 것에 대한 추가적인 연구가 필요하며, 이에 앞서, 일정한 밀도차를 갖는 연속적인 밀도변화층이 존재한다는 가정이 반드시 필요하다.에는 관련성을 갖고 있으며, 이는 유류 분해정도를 파악하는 지시자로써 특정 무기 오염물질을 이용할 수 있을 가능성이 있으므로 좀더 이들 관계성에 대한 연구가 진행될 필요성이 있다고 판단된다.고 과학적으로 분석할 수 있는 방법이 될 수 있을 것으로 기대된다. 의미를 되새기는 것으로 짧은 연구를 시작하겠다. 등은 활성 값이 70% 이상으로 퇴적물 독성이 상대적으로 낮았다. 이중나선 DNA 함량은 28.4 % - 49%로 대조군에 비해서 감소가 크다. 대부분의 정점이 대조군의 30% 내외로 정점 간의 차이는 크지는 않다. 그러나 다른 측정자료와 같이 정점 22에서 18%로 최소치를 나타내고, 정점 2, 12에서 20% 내외의 값을 보인다. 종합적으로 볼 때 오염물질의 유입이 크고, 광양제철 인근 정점 들이 모두 다른 정점에 비해서 낮아서, 퇴적물 독성이 높은 정점으로 조사되었다.hiwo의 광합성 능력은 낮은 농도들에서는 대조구와 유사하였으나, 5 $\mu\textrm{g}$/l의 높은 농도에서는 초기에 매우 낮은 광합성 능력을 보이다가 시간이 경과하면서 대조군보다 더 높은 경향을 나타냈다. 이러한 결과는 식물플랑크톤이 benso[a]pyrene의 낮은 농도에서 노출될 때는 이 물질을 탄소원으로 사용할 가능성이 있음을 시사한다. 본 연구의 결과들은 연안해역에 benso[a]pyrene과 같은 지속성 유기오염물질이 유입되었을 때 내정여부에 따라 식물플랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII

  • PDF

Extraction of Moho Undulation of the Korean Peninsula from Gravity Anom-alies (중력이상을 이용한 한반도 모호면 추출에 관한 연구)

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;권재현;황종선
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2003
  • We estimated the Moho depth of Korean Peninsula from gravity anomalies and digital elevation model. The satellite radar altimetry-derived global free-air gravity model was used to ensure the homogeneity in both data and frequency domains of the original data. Two different methods were implemented to calculate the Moho depth; the wavenumber correlation analysis (Kim et al., 2000a) and the power spectrum analysis. The former method calculates depth-to-the-Moho by correlating topographic gravity effect with free-air gravity anomaly in the wavenumber domain under the assumption that the study area is not isostatically compensated. The latter one, on the other hand, considers the different density layers (i.e., Conrad and Moho), using complete Bouguer gravity anomaly in the Frequency domain of the Fourier transform. The correlation coefficient of the two Moho model is 0.53, and methodology and numerical error are mainly responsible for any mismatch between the two models. In order to integrate the two independentely-estimated models, we applied least-squares adjustment using the differenced depth. The resultant model has mean and standard deviation Moho depths of 32.0 km and 2.5 km with (min, max) depths of (20.3, 36.6) kms. Although this result does not include any topographic gravity effect, however, the validity of isostasy and the role of local stress field in the study area should be further studied.

A Geophysical Study on the Geotectonics and Opening Mechanism of the Ulleung Basin, East Sea (동해 울릉분지의 지구조 및 성인에 관한 지구물리학적 연구)

  • Suh, Man-Cheol;Lee, Gwang-Hoon;Shon, Ho-Woong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Analysis of gravity, magnetic, and seismic reflection data from the Ulleung Basin, East Sea has provided some insights into the opening mechanism and crustal type of the basin. Free-air gravity anomaly data show positive anomalies of about 40~60 mgal near the Korea Plateau and Oki Bank and of about -20~20 mgal in the central basin. Bouguer gravity anomaly data exhibit NE-SW trending positive anomalies of about 150 mgal in the central basin which is interpreted to be related to high-density crustal material. Abrupt changes in both Free-air and Bouguer gravity anomaly profiles across the basin margins may be due to transition between continental and oceanic crusts. Magnetic anomalies in the basin are generally less than -400 nT. No stripe pattern is evident in the magnetic anomaly map but a NW-SE trending symmetric pattern is seen in some magnetic profiles. The symmetric pattern is probably associated with the high-density crustal material in the central basin suggested by Bouguer gravity anomaly. The acoustic basement in the deep part of the basin has only a small amount of local relief. No graben or half-graben structures are seen in the acoustic basement from which mechanical extension might be inferred. The lack of high-relief structures in the acoustic basement may suggest that the basin is underlain by oceanic crust or that the basement is overlain by thick volcanic layer which obscures the structures and relief of the basement. High-density crust in the central basin inferred from gravity data, abrupt changes in gravity anomalies across the basin margins, symmetric pattern seen in some magnetic anomaly profiles, and lack of relief in the acoustic basement may suggest sea-floor spreading origin of the Ulleung Basin.

  • PDF

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

The Study of Formation for Dokdo Seamounts at the Northeastern Part of the Ulleung Basin Using Gravity and Magnetic Data (중력 및 자력자료 분석에 의한 울릉분지 북동부 독도 및 주변 해산들의 형성 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong;Ko, Young-Tak;Jung, Eui-Young;Kwak, Jun-Young;Yoo, Sang-Hoon;Min, Kyung-Duck
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.153-170
    • /
    • 2007
  • Loading time and loading environment of the Dokdo seamounts were studied from flexure model and VGP(Virtual Geomagnetic Pole) determined by gravity and magnetic data. In spite of their similarity in size. a large difference about 50 mGal between gravity anomaly peaks of Dokdo and the Isabu Tablemount suggests different compensation degrees. Flexural modeling results show that the flexural rigidity(effective elastic thickness) of lithosphere for Dokdo is stronger(thicker) than that for the Isabu Tablemount. Also, it implies that the age of lithosphere at the time of loading of the Isabu Tablemount may be younger than that of Dokdo. Magnetic anomalies occur complicated over the Dokdo seamounts. Paleomagnetism was studied from VGP estimated by the least square and the seminorm magnetization methods with 1500 m upward continued magnetic anomalies. Age dating of Dokdo from previous study, flexural modeling, VGP, and geomagnetic polarity time scale suggest that after the cease of spreading in the Ulleung Basin, the Isabu Tablemount was formed first in normal polarity interval and followed by Dokdo. Also, they indicate that the fist large eruption of Dokdo was in normal polarity interval and the second large eruption in reversed polarity interval. The Simheungtaek Tablemount was formed in normal polarity interval between the formations of the Isabu Tablemount and Dokdo. These loading times for the Dokdo seamounts show a good coherence with the compressive stress period after the end of the opening of the East Sea. The Dokdo seamounts probably was caused by volcanism associated with the compressive stress.