• Title/Summary/Keyword: 후류 유기 천이 띠

Search Result 3, Processing Time 0.015 seconds

Unsteady Transitional Boundary Layer due to Rotor Stator Interaction at Design and Off Design Operations (설계점 및 탈설계점에서의 rotor-stator 상호작용에 의한 비정상 천이 경계층의 수치해석적 연구)

  • Kang Dong Jin;Jun Hyun Joo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.17-30
    • /
    • 1999
  • The unsteady transitional boundary layer due to rotor-stator interaction was studied at two operation points, the design and one off design points. The off design point leads to lower blade loading and lower Reynolds number. A Navier-Stokes code developed in the previous study was parallelized to expedite computations. A low Reynolds number turbulence model was used to close the momentum equations. All computations show good agreement with experimental data. The wake induced transitional strip on the suction side of the stator is clearly captured at design point operation. There is no noticeable change in shape and phase angle of the wake induced strip even in the laminar sublayer. The wake induced transitional strip at off design point shows more complex structure. The wake induced transitional strip is observed only in the turbulent layer, and becomes obscure in the laminar sublayer and buffer layer. This behavior is probably consequent upon that the transition is governed by both wake induced strip and natural transition mechanism by Tollmien-Schlichting wave.

  • PDF

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow- (정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II))

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.