• Title/Summary/Keyword: 후기관입

Search Result 96, Processing Time 0.038 seconds

전주전단대 화강암류의 SHRIMP U-Pb 저어콘 연령측정: 호남전단대의 운동시기에 대한 고찰

  • 이승렬;이병주;조등룡;기원서;고희재;김복철;송교영;황재하;최범영
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.55-55
    • /
    • 2003
  • 호남전단대는 옥천대 남서부지역에 북동 내지 북북동 방향으로 발달하는 일련의 우수향 연성전단대로 한반도를 포함하는 동북아 지역의 중생대 부가작용과 관련하여 매우 중요한 조구조적 요소이며, 특히 북중국 대륙과 남중국 대륙이 유라시아 대륙에 부가되는 과정과 관련하여 동북아 지역의 중생대 지체구조 발달사를 설정하는데 매우 중요하게 생각되고 있다. 그러나 이러한 조구조적 중요성에도 불구하고 호남전단대의 정확한 운동 시기는 아직 밝혀지지 않고 있다. 이번 연구는 전주전단대가 지나가는 김제 금산사 지역과 무안 지역에 분포하는 화강암류를 대상으로 SHRIMP U-Pb 저어콘 연대 측정을 실시하여 전단운동시기를 밝혔다. 금산사 지역은 엽리상 각섬석-흑운모 화강섬록암이 흑운모 화강암에 포획된 명확한 지질학적 증거를 보이고 있는 곳으로 화강섬록암의 U-Pb 저어콘 연대는 172.7 $\pm$ 1.4 Ma이며 화강암의 연대는 169.6 $\pm$ 1.8 Ma과 167.5 $\pm$ 2.4 Ma로 구해졌다. 따라서 전주전단대의 전단운동은 약 173 - 170 Ma 기간에 일어났다. 특히 화강암 내에 포획된 화강섬록암 내에는 전반적인 우수향 전단운동 후기에 관입한 다수의 석영질 맥이 좌수향의 전단운동을 받은 증거가 관찰되는데 이러한 사실은 우수향의 전단운동 이후 화강암의 관입 이전에 좌수향의 전단 운동이 있었음을 지시한다. 무안 지역은 전주전단대의 끝 부분에 해당하는 곳으로 각섬석화강섬록암과 이를 관입한 각섬석화강암이 모두 우수향의 전단운동을 받았다. 화강섬록암의 U-Pb 저어콘 연대는 176.3 $\pm$ 1.7 Ma이며 화강암의 연대는 165.8 $\pm$ 2.0 Ma로 구해졌으며, 따라서 최종 우수향 전단운동의 시기는 166 Ma 이후로 생각된다. 무안 지역에 분포하는 화강섬록암과 화강암의 관입시기는 금산사 지역의 화강섬록암과 화강암과 각각 조화적이다. 호남전단대의 운동 시기를 밝히기 위해 전주전단대에 해당하는 금산사 지역과 무안 지역에 분포하는 화강암류에 대한 U-Pb 저어콘 연대 측정을 실시한 결과 호남전단대의 특징적인 우수향 전단운동은 적어도 2회에 걸쳐 일어났음을 알 수 있다. 즉 첫 번째 광역적인 전단운동은 약 173 - 170 Ma 시기에 일어났으며, 두 번째 전단운동은 166 Ma 이후에 일어났음을 알 수 있다. 한편 전기의 우수향 전단운동은 후기 화강암 관입 이전에 좌수향 전단 운동에 의해 부분적으로 재활성 되었으며, 후기 화강암의 관입 이후에 재차 우수향 전단운동으로 활성화 되었음을 알 수 있다. 이상의 결과를 종합하면 호남전단대는 쥬라기 중기에 발생한 광역적인 우수향의 연성전단운동이나, 운동 특성은 연속적이기 보다는 단속적으로 일어난 것으로 생각된다.

  • PDF

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

운장산일대에 분포하는 백악기 화강암류의 암석 및 암석화학

  • 윤현수;홍세선;박석환;김주용;양동윤;이병태
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.288-290
    • /
    • 2003
  • 전북진안의 운장산일대에 분포하는 백악기 홍색 흑운모 화강암류는 연구지역의 동부와 서부에서 각각 원형 및 타원형의 독립된 암체로 발달한다. 서부 화강암체의 흑운모연령 (K/Ar 법)은 백악기초기(김옥준, 1971)로 보고된 바 있어, 같은 암석학적 특성을 가지는 동부암체도 거의 같은 시기의 것으로 해석된다. 동부와 서부 화강암체에는 공동구조(miarolitic)가 도처에서 산점상으로 발달하며, 이들은 부분적으로 다소 큰 형태를 이루기도 한다. (중략)

  • PDF

The crenulation of Ogcheon metasedimentary rocks near the Ogcheon granite and the Honam shearing, Korea (옥천화강암 부근 옥천 변성퇴적암류의 파랑습곡구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • The age unknown Ogcheon metasedimentary rocks and the Jurassic Ogcheon granite (Jocgr) intruding it are distributed in the Ogcheon area, which is located in the central part of the Ogcheon Belt, Korea, This paper newly examines the timing of Honam shearing on the basis of the microstructural researches on time-relationship between the crenulation of Ogcheon metasedimentary rocks and the contact metamorphism by the intrusion of Jocgr. The D2 crenulation phase, which is defined by the microfolding of the S1 foliation in the metasedimentary rocks, is divided into two sub-phases. The one is a sub-phase of Early crenulation (D2a) which is included within old andalusite porphyroblasts, and the other is that of Late crenulation (D2b) which warps around the old andalusite. But they show the same dextral shear sense, the axial planes parallel to each other, and a single crenulation at outcrop scale. The contact metamorphism of andalusite-sillimanite type by the Jocgr occurred during the inter-phases of D2a and D2b, and crystallized the old andalusite masking the D2a crenulation and fibrous sillimanites replacing the D2a crenulation-forming muscovites. New andalusite porphyroblasts synkinematically grew in pressure shadows around the old andalusite or in its outermost mantles during the early stage of the D2b. The D2b occurred still continuously after the growth of the andalusite ceased (= later stage of the D2b). It indicates that the D2b occurred continuously during the period when the Ogcheon granite was still hot and cool. From this study, the crenulation history of Ogcheon metasedimentary rocks and the timing of Honam shearing would be newly established and reviewed as follows. (1) Early Honam shearing; formative period of Early crenulation, (2) main magmatic period of Jurassic granitoids; growth of the old andalusite and fibrous sillimanite by the intrusion of Jocgr, (3) main cooling period of Jurassic granitoids; formative period of Late crenulation related to Late Honam shearing, growth of the new andalusite in the early stage of D2b. Thus, this study proposes that the Honam shear movement would occur two times at least before and after the intertectonic phase which corresponds to the main magmatic period of Jurassic granitoids.

Geology and Ore Deposit of the Apdong Nb-Ta Mine, North Korea (북한 압동 니오븀-탄탈륨(Nb-Ta) 광산의 지질 및 광상)

  • 이재호;김유동
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.407-413
    • /
    • 2003
  • The geology of the Apdong Nb-Ta deposit, is hosted by alkali metasomatites, consist of Upper Proterozoic sedimentary rocks, alkali syenites(Hoamsan intrusive) of Phyonggang Complex(late Paleozoic to early Mesozoic), Jurassic granite and Quaternary basalt. Alkali syenites are distinguished as alkali amphibole-pyroxene syenite, alkali amphibole-biotite syenite, biotite-nepheline syenite, biotite syenite, and quartz-alkali amphibole-pyroxene syenite. Alkali metasomatites are the products of intense post-magnatic metasomatism, and form the Nb-Ta ore bodies as the belt, irregular vein and lenticular types in the southern part of Hoamsan intrusive. The ore mineralization is characterized by the occurrence of pyrochlore, zircon, and small amounts of columbite, fergusonite. magnetite, fluorite, molybdenite, ilmenite, titanite, apatite, and monazite. Pyrochlore is one of the niobium/tantalum oxides and contains substantial amounts of rare earths and radioactive elements. The compositional varieties of pyrochlore can be defined: (1) enriched in tantalum, uranium and cerium, (2) substantially tantalum- and fluorine-poor, and (3) enriched in thorium or barium. The geochemical characteristics, ore textures and mineral occurrences indicate that alkali metasomatism of the mineralizing fluid was the dominant ore-forming process.

Volcanisms and igneous processes of the Samrangjin caldera, Korea (삼랑진 칼데라의 화산작용과 화성과정)

  • 황상구;김상욱;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.147-160
    • /
    • 1998
  • The Samrangjin Caldera, a trapdoor-type, formed by the voluminous eruption of the silicic ash-flows of the Samrangjin Tuff which is above 630m thick at the northern inside of the caldera and thinnerly 80m at the southern inside. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was ejected to form the Samrangjin Tuff. The explosive eruptions began with phreatoplinian eruption, progressed through small plinian eruption and transmitted with ash-flow eruption. During the ash-flow eruption, contemporaneous collapse of the roof of the chamber resulted in the formation of the Samrangjin caldera, a subcircular depression subsiding above 550m deep. During postcaldera volcanism after the collapse, flow-banded rhyolite was emplaced as cental plug along the central vent and ring dikes along the caldera margins. Subsequently rhyodacite porphyry and dacite porphyry were emplaced along the inner side of the ring dike. After their emplacement, residual magma was emplaced as a hornblende biotite granite stock into the southwestern caldera margin. In the northeastern part, the eastern dikes were cut final intrusions of granodioritic to granitic composition along the fault zone of $^{\circ}$W trend.

  • PDF

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

Introduction of Several Albitite-greisen Type Deposits of Korea (한국 알비타이트-그라이젠형 광상의 소개)

  • Yoo, Jang Han;Koh, Sang Mo;Moon, Dong Hyeok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.221-231
    • /
    • 2012
  • Uljin cassiterite deposit had been known to be a pegmatitic origin derived from the Wangpiri (Buncheon) granitic gneiss of Precambrian period. Lithium ore also shows the same origin and its lithium bearing mineral was ascertained to be a taeniolite. But the presence of leucocratic granites which played the role of host rocks haven't been clearly designated yet in these provinces. Even though Bonghwa and Youngweol sericite deposits situated in the vicinities of Hambaeg syncline had been known to have their host rocks as Hongjesa Granites of Precambrian period and Pegmatitic migmatite of unknown age respectively. But younger leucocratic granites are characterized by more amounts of albite and sericite (muscovite-3T type) than those of the older granitic rocks which contain plenty of biotite and chlorites. Although the younger granites show rather higher contents of alkalies such as $Na_2O$ (0.13~8.03 wt%) and $K_2O$ (1.71~6.38 wt%), but CaO (0.05~1.21 wt%) is very deficient due to the albitization and greisenization. Manisan granite, which is assumed to be Daebo granite which intruded the Gyunggi Gneiss Complex was again intruded by leucocratic granite whose microclinized part changed into kaolins. Taebaegsan region shows a wide distribution of carbonate rocks which are especially favorable to the ore depositions. And the presence of alkali granites which formed in the later magmatic evolution are well known to be worthwhile to the prospections of various rare metals and REEs resources.

Magmatic evolution of igneous rocks related with the Samrangjin caldera, southeastern Korea (삼랑진 칼데라에 관련된 화성암류의 마그마 진화)

  • 황상구;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.161-176
    • /
    • 1998
  • There are exposed Samrangjin Tuff and intracaldera intrusions, of which rhyolitic rocks emplaced as postcollapsed central and ring intrusions within the Samrangjin caldera, and fine-grained granodiorite and biotite granite as regional tectonic intrusions nearby. The Samrangjin Tuff and the rhyolitic rocks are of a single Samrangjin magmatic system. Flow-banded rhyolite among rhyolitic rocks was emplaced in the outer part of the ring intrusions, rhyodacite in the inner part of the eastern ring, and porphyritic dacite and dacite porphyry in the inner part of the northwestern ring. Totally the Samrangjin Tuff and the rhyolitic rocks range from rhyolite to dacite in chemical composition. The Rb-Sr isotopic data of the Samrangjin Tuff and the rhyolitic rocks yield an age of $80.8{\pm}1.5(2{\sigma})$ Ma with the initial $^{87}Sr/^{86}Sr$ ratio of $0.70521{\pm}0.00010(2{\sigma})$. The continuous compositional zonations generally define a large stratified magma system in the postcollapse magma chamber. The Sr isotopic data suggest that the compositional zonations might have resulted from the fractional crystallization of a parental dacitic magma.

  • PDF

Petrochemical Characteristics of the Granites in the Jeomchon area (점촌일대에 분포하는 화강암류에 대한 암석화학적 연구)

  • 최원희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The granites in the Jeomchon area can be divided into hornblende biotite granite (Hbgr), deformed biotite granite (Dbgr), deformed pinkish biotite granite(Dpbgr), biotite granite (Btgr), and granite porphyry(Gp). These granites show metaluminous, 1-type and calc-alkaine characteristics from their whole-rock chemistry. Hbgr and Dbgr belong to ilmenite-series granitoids, but Gp to magnetite-series. Dpbgr and Btgr show the intermediate nature between ilmenite- and magnetite-series. Tectonic discriminations indicate that Hbgr and Dbgr were formed in active continental margin environment, whereas Dpbgr, Btgr, and Gp in post-orogenic and/or anorogenic rift-related environment. From the Harker diagrams major oxide contents of Hbgr and Dbgr show a continuous variation with $SiO_2$, indicating that they are genetically correlated with each other. On the other hand, any correlation of major oxides variation cannot be recognized among Dpbgr, Btgr and Gp. It seems like that Hbgr and Dbgr were derived from a same parent granitic magma, judging from their occurrence of outcrop, mineral composition as well as whole-rock chemistry. Variation trends of major oxide contents between Hbgr and Baegnok granodiorite are very similar and continuous. If the two granites were derived from a cogenetic magma, there exists a possibility that the granitic bodies had been separated by Btgr and Gp of Cretaceous age. Three stages of the granitic intrusions are understood in the Jeomchon area. After the intrusion of Hbgr and Dbgr during middle to late Paleozoic time, Dpbgr emplaced into the area next, and finally Btgr and Gp intruded during Cretaceous time. Tectonic movement accompanying shear and/or thrust deformation seems likely to have occurred bewteen the intrusions of Dpbgr and Btgr.

  • PDF