DOI QR코드

DOI QR Code

Introduction of Several Albitite-greisen Type Deposits of Korea

한국 알비타이트-그라이젠형 광상의 소개

  • Yoo, Jang Han (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Sang Mo (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Moon, Dong Hyeok (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 유장한 (한국지질자원연구원 광물자원연구본부) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부) ;
  • 문동혁 (한국지질자원연구원 광물자원연구본부)
  • Received : 2012.11.22
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Uljin cassiterite deposit had been known to be a pegmatitic origin derived from the Wangpiri (Buncheon) granitic gneiss of Precambrian period. Lithium ore also shows the same origin and its lithium bearing mineral was ascertained to be a taeniolite. But the presence of leucocratic granites which played the role of host rocks haven't been clearly designated yet in these provinces. Even though Bonghwa and Youngweol sericite deposits situated in the vicinities of Hambaeg syncline had been known to have their host rocks as Hongjesa Granites of Precambrian period and Pegmatitic migmatite of unknown age respectively. But younger leucocratic granites are characterized by more amounts of albite and sericite (muscovite-3T type) than those of the older granitic rocks which contain plenty of biotite and chlorites. Although the younger granites show rather higher contents of alkalies such as $Na_2O$ (0.13~8.03 wt%) and $K_2O$ (1.71~6.38 wt%), but CaO (0.05~1.21 wt%) is very deficient due to the albitization and greisenization. Manisan granite, which is assumed to be Daebo granite which intruded the Gyunggi Gneiss Complex was again intruded by leucocratic granite whose microclinized part changed into kaolins. Taebaegsan region shows a wide distribution of carbonate rocks which are especially favorable to the ore depositions. And the presence of alkali granites which formed in the later magmatic evolution are well known to be worthwhile to the prospections of various rare metals and REEs resources.

울진지역 석석(Sn)광상은 선캠브리아기의 왕피리(분천)화강편마암을 모암으로 하는 페그마타이트에 배태되는 것으로 기재되었지만, 실질적 기원암으로서 후기의 우백질화강암체의 존재는 간과되었다. 또한, 함께 산출되는 리튬광체도 같은 화강암의 분화산물이며, 리튬 포함 광물은 테니오라이트로 확인된다. 경북 봉화와 강원도 영월의 견운모광상은 함백향사 일대에 위치하며, 모암은 각기 시대미상 및 선캠브리아기 페그마타이틱 미그마타이트 및 홍제사화강암류로 기재되었으나, 이들도 고기 화강암류와 구분되는 후기 화강암류와 관련이 있다. 흑운모 및 녹니석류를 흔히 포함하는 고기 화강암류와 달리, 후기 화강암류는 알바이트장석과 백운모-3T형 등이 많이 포함되는 것이 특징이다. 즉, 후기 화강암류는 $K_2O$$Na_2O$ 함량이 각기 1.71~6.38 및 0.13~8.03 wt%로서 알칼리 함량이 높지만, CaO는 0.05~1.21 wt% 에 불과하며, 그라이젠화와 알비타이트화가 뚜렷하다. 경기도 강화섬의 선캠브리아기 경기편마암복합체를 관입한 대보화강암으로 추정되는 마니산화강암을 관입한 우백질 화강암체도 농집된 미사장석이 고령토화되었다. 태백산 일대는 광상형성에 유리한 탄산염암의 분포가 넓으며 기반암류와 구분되는 분화 후기의 알카리화강암류가 산재하므로, 주변의 중석, 휘수연 및 석석광상 등에 대한 재조명과 함께 희유금속류 및 희토류원소류의 확인이 기대된다.

Keywords

References

  1. Bristow, C.M. (1987) World kaolins-genesis, exploration and application. Industrial Minerals, 238, 45-59.
  2. Choi, Y.K., Hong, M.S., Kim, B.K., Yoon, S.K., Lee, D.S., Cheong, C.H., Son, C.M., and Kim, H.T. (1962) Geological map of Gyesanchon sheet, Report on the geology and mineral resources of the Taebaegsan region. Geological Survey of Korea (in Korean).
  3. Dewaele, S., Henjes-K.unst, F., Melcher, F., Sitnikova, M., Burgess, R., Gerdes, A., Fernandez, M.A., De Clercq, F., Muchez, P., and Lehmann, B. (2011) Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area Rwanda (Central Africa). Journal of African Earth Science, 61, 10-26. https://doi.org/10.1016/j.jafrearsci.2011.04.004
  4. Guilbert, J.M. and Park, C.F. Jr. (2007) The geology of ore deposits. Waveland Press, Inc., Long Grove, Illinois, 397-509.
  5. Hong, J.K. (1996) Before the fact might not be forgotten (One of sections in the reality of Korean mining history), 52-60 (in Korean).
  6. Kim, O.J. (1963) Geological map of Samgun sheet (7024-IV) and explanatory text. Geological Survey of Korea (in Korean with English summary).
  7. Kim, Y.J. and Lee, D.S. (1983) Geochronology and petrogenetic processes of the so-called Hongjesa granite in the Seogpo-Deogku area. Journal of the Korean Mining Geology, 16, 163-221 (in Korean with English abstract).
  8. Kim, Y.J., Cho, D.L., and Hong, S.S. (1986) Petrochemical study of alkali granites in the northern area of the Uljin mine. Journal of the Korean Mining Geology, 19, 123-131 (in Korean with English abstract).
  9. Kim, J.H., Yoo, J.H., Park, Y.S., and Kim, Y.U. (1984) Investigation of the Daehyun sericite deposit. Korea Research Institute of Energy and Resources, (83-Mineral resources-4-13), 99-123 (in Korean with English abstract).
  10. Kinnaird, J.A. (1984) Contrasting styles of Sn-Nb-Ta- Zn mineralization in Nigeria. Journal of African Earth Sciences, 2, 81-90. https://doi.org/10.1016/S0731-7247(84)80001-4
  11. Kuster, D. (2009) Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geology Reviews, 35, 68-86. https://doi.org/10.1016/j.oregeorev.2008.09.008
  12. LaLonde, R.E. (1963) X-ray diffraction data for taeniolite. American Mineralogist, 48, 204-205.
  13. Lee, D.S. (1966) Ogdong sheet (6925-III) and explanatory text. Geological Survey of Korea (in Korean).
  14. Miser, H.D. and Stevens, R.E. (1938) Taeniolite from Magnet Cove, Arkansas. American Mineralogist, 23, 104-110.
  15. Moon, S.H., Park, H.I. Ripley E.M., and Lee I.S. (1996) Mineralogical and stable isotope studies of cassiterite greisen moneralization in the Uljin area, Korea. Economic Geology, 91, 916-933. https://doi.org/10.2113/gsecongeo.91.5.916
  16. Moon, S.H. and Park, H.I. (1994) Alteration of granite gneiss and their genetic relationship to tin mineration in the Uljin area. Journal of the Geological Society of Korea, 30, 125-139 (in Korean with English abstract).
  17. Na, K.C. and Lee, D.J. (1978) Petrological study of Hongjesa Granite. Journal of the Geological Society of Korea, 14, 103-112.
  18. Oh, J.H., Hwang, J.Y., Koh, S.M., Kwack, K.W., Lee, H.M., and Chi, S.J. (2008) Occurrence and mineralogy of sericite deposit in the Hongjesa granite from the Bonghwa area in Kyungsangbuk-do, Korea. Journal of the Mineralogical Society of Korea, 21, 67-84 (in Korean with English abstract).
  19. Rhee, B.Y. and Kim, S.J. (1998) Mineralogical study of sericite in the Daehyun mine: formation, chemistry and polytype. Journal of the Mineralogical Society of Korea, 11, 69-84 (in Korean with English abstract).
  20. Rub, A.K., Stemprok, M., and Rub, M.G. (1998) Tantalum mineralization in the apical part of the Cinovec (Zinnwald) granite stock. Mineralogy and Petrology, 63, 199-222. https://doi.org/10.1007/BF01164151
  21. Smirnov, V.I. (1976) Geology of mineral deposit. Mir Publishers, Moscow, 197-210.
  22. Srivastava, P.K. and Sinha, A.K. (1997) Geochemical characterization of tungsten-bearing granites from Rajasthan, India. Journal of Geochemical Exploration, 60, 173-184. https://doi.org/10.1016/S0375-6742(97)00005-8
  23. Stemprok, M. (1987) Greisenization (a review). Geologische Rundschau 76/1, 169-175. https://doi.org/10.1007/BF01820580
  24. Teng, F.Z., McDonough, W.F., Rudnick, R.L., Walker, R.J., and Sirbescu, M.L.C. (2006) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. American Mineralogist, 91, 1488-1498. https://doi.org/10.2138/am.2006.2083
  25. Webster, J.D., Thomas, R., Rhede, D., Forster, H.-J., and Seltmann, R. (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine- rich and phosphrous-rich residual liquids. Geochimica et Cosmochimica Acta, 61, 2589-2604. https://doi.org/10.1016/S0016-7037(97)00123-3
  26. Yoo, J.H. and Chi, S.J. (2008) Genetic consideration of sericite deposits derived from granitic rocks in the Taebaegsan region. Journal of the Mineralogical Society of Korea, 21, 239-246 (in Korean with English abstract).
  27. Yoo, J.H., Hong, S.S., Lee, H.J., and Cho, H.I. (1990) Secondary kaolin deposits of Jeollabugdo and primary deposits of Kanghwa island, Kyunggido. Korea Research Institute of Energy and Resources, (KR-90-2B-1), 5-63 (in Korean with English abstract).

Cited by

  1. Characteristics of the Small Scale Leucocratic Granites in the Eastern Parts of the Taebaegsan Region, Korea vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.375
  2. Presence of Leucocratic Granites of the Taebaegsan Region and Its Vicinities vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.263
  3. Petrological characteristics of the Yeongdeok granite vol.23, pp.2, 2014, https://doi.org/10.7854/JPSK.2014.23.2.31