• Title/Summary/Keyword: 효율적 학습방법

Search Result 1,397, Processing Time 0.035 seconds

Design and Implementation of a Generic Classification System Based on Incremental Learning Technology (점진적 학습 기술 기반 범용적인 분류기 구조설계 방법의 설계 및 구현)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.425-426
    • /
    • 2019
  • 전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.

  • PDF

A Study on Construction of Back-propagation Architecture for ARMA data (ARMA 데이터에 대한 Back-propagation 신경망의 구조)

  • 김나영;김희영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-22
    • /
    • 2000
  • 시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.

  • PDF

A Study on Efficient Machine Learning Method Using Random Search and Genetic Algorithm Search (랜덤 탐색과 유전 알고리즘 탐색을 이용한 효율적 기계학습 방법 연구)

  • Lee, Kyung-Tae;Kwon, Young-Keun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.494-496
    • /
    • 2020
  • 기계학습 모델을 이용한 분류 및 회귀 문제해결에는 다양한 전처리 알고리즘 및 기계학습 모델이 활용된다. 하지만 합리적인 성능을 위해서는 주어진 데이터에 따라 적절한 알고리즘 조합에 대한 탐색 및 최적화 과정이 펄수적이다. 본 논문에서는 최적의 알고리즘 조합을 탐색하는 방법 중 랜덤 탐색과 유전 알고리즘 탐색 방법을 구현하고 8가지 데이터에 대한 성능 비교를 통해 여러 기계학습 모델을 고려하는 탐색 방법의 필요성을 보인다.

Efficiency Improvement in Engineering Education by Combining Online Contents and Self-driven Team Study Materials (온라인 콘텐츠 및 자기주도적 팀별 오프라인 학습자료 활용을 통한 공학교육의 효율제고)

  • Ju, Young-Hee;Park, Chang-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.225-226
    • /
    • 2011
  • 인터넷 활용 보급과 초고속 통신망의 확대는 능동적 학습, 상호작용적 학습, 협력학습 등의 원리들을 구현할 수 있다는 점에서 그 교육적 가치는 매우 높다. 즉, 개방적이며 상호작용적인 특성을 지니는 교육 체제로의 변화와 함께 우리들의 학습에 융합시킬 수 있는 컨텐츠가 필요하다. 본 연구의 목적은 학습자 중심의 자기주도적 공학교육 컨텐츠 개발에 대한 실질적인 방법을 제시하고자 한다. 교육 패러다임의 변화로 인하여 온 오프라인 컨텐츠의 활용이 높아지고 있으며 온라인학습을 통한 교수학습의 용이성과 오프라인을 통한 직접적 학습 피드백, 팀플레이 자료구성 및 발표 등의 컨텐츠가 추가적으로 필요하다. 또한, 기본적인 공학교육에 바탕하여 최신 정보에 대해 주도적이며 자발적인 학습과정을 통해 알아보고 그 정보의 분석과 발표를 통하여 효율적인 학습효과를 얻을 수 있다. 결론적으로, 정부에서의 국내 공학교육의 재정적인 지원 및 공학교육에 대한 대학 간의 교류를 더 마련해야하며 꾸준한 지원 및 교수학습의 방법과 전략에 대한 세부적인 연구와 개발이 필요하다고 본다.

  • PDF

Efficient Learning Method through an Ananlysis of Learning pattern based on the Sasang Consitution (사상체질에 따른 학습패턴 분석을 통한 효율적인 학습방법)

  • Jung, Sung-Ki;Joo, Kil Hong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.123-126
    • /
    • 2009
  • 오늘날 학생들의 성적을 고려하는 중요한 요소로 사회적인 특성과 환경적인 특성이 매우 중요시 되고 있다. 이는 대인관계, 사회적인 관계, 학교에서의 관계 등이 중요한 요소가 되기 때문이다. 이러한 특징을 잘 표현해 주는 것으로 사상체질에 대한 분석이 있다. 우리가 알고 있는 MBTI를 이용한 분석에 대한 연구가 많이 있으나 이는 환경적인 특성과 사회적인 특성을 잘 반영하지 못하고 있다. 따라서 본 논문에서는 사상체질의 특성을 분석하여 세부적인 특징을 추출한 후 잘 알려진 MBTI의 요소와의 관계를 분석한다. 이를 통해 사상체질 분석을 통하여 추출된 내용을 MBTI의 연구된 내용에 접목시켜 학생의 학습방법을 지도할 수 있는 방안을 모색하도록 한다. 또한 사회적, 환경적 특성을 고려한 학습방법을 제시하는데 많은 도움을 줄 수 있다.

  • PDF

Claim Detection and Stance Classification through Pattern Extraction Learning in Korean (패턴 추출 학습을 통한 한국어 주장 탐지 및 입장 분류)

  • Woojin Lee;Seokwon Jeong;Tae-il Kim;Sung-won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.234-238
    • /
    • 2023
  • 미세 조정은 대부분의 연구에서 사전학습 모델을 위한 표준 기법으로 활용되고 있으나, 최근 초거대 모델의 등장과 환경 오염 등의 문제로 인해 더 효율적인 사전학습 모델 활용 방법이 요구되고 있다. 패턴 추출 학습은 사전학습 모델을 효율적으로 활용하기 위해 제안된 방법으로, 본 논문에서는 한국어 주장 탐지 및 입장 분류를 위해 패턴 추출 학습을 활용하는 모델을 구현하였다. 우리는 기존 미세 조정 방식 모델과의 비교 실험을 통해 본 논문에서 구현한 한국어 주장 탐지 및 입장 분류 모델이 사전학습 단계에서 학습한 모델의 내부 지식을 효과적으로 활용할 수 있음을 보였다.

  • PDF

Data preprocessing for efficient machine learning (효율적인 기계학습을 위한 데이터 전처리)

  • Kim, Dong-Hyun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.49-50
    • /
    • 2019
  • 데이터를 기반으로 한 기계학습은 데이터의 양, 학습 모델, 그리고 데이터의 특징 등 다양한 환경에 민감한 특징을 지니고 있어, 보다 효율적인 기계학습을 위해 데이터의 전처리 과정을 필요로 한다. 데이터의 전처리 과정이란 특징 선택(Feature selection), 노이즈 데이터의 제거, 차원 감소(Demension reduction), 클러스터링(Clustering) 등 보다 효율적인 기계학습을 위한 방법이다. 따라서 본 논문에서는 다양한 환경에서 보다 효율적인 기계학습을 위한 데이터 전처리 기술의 종류 및 간단한 특징에 대해 서술한다.

  • PDF

Learner′s Face Extracting and Searching for the Efficiency of Moving-Picture Lecture (동영상 강의의 효율성을 위한 학습자의 얼굴추출 및 탐색)

  • 김철민;이양원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.374-377
    • /
    • 2004
  • 동영상 강의는 시간이나 장소 등에 크게 구애받지 않고 인터넷을 통하여 쉽게 이용할 수 있는 간편한 학습방법중의 하나이다. 그러나 학습자의 학습자세와 태도에 따라 학습효과는 매우 다를 수 있는 문제점을 가지고 있다. 본 논문에서는 입력영상으로부터 학습자의 얼굴정보를 입력받아 주기적으로 탐색하여 학습자의 강의에 대한 집중도와 충실도를 평가하는 시스템을 제안하고자 하였다. 먼저 입력영상의 분할된 중심영역으로부터 학습자의 얼굴을 포함하는 신체정보를 입력받아 사용하였으며, 빠르고 효율적인 얼굴영역의 추출을 위하여 피부색상(skin-color)정보와 얼굴의 지역적 특성을 이용하는 방법을 사용하였다. 또한 주기적으로 입력되는 영상의 빠른 얼굴추적을 위하여 설정된 영역들로부터 구성되는 블록들의 위치와 구성정보를 이용한 블록탐색 기법을 사용하였다.

  • PDF

Efficient Learning of Neural Network Using an Improved Genetic Algorithm (개선된 유전 알고리즘을 사용한 효율적 신경망 학습)

  • 김형래;김성주;최우경;하상형;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.315-318
    • /
    • 2004
  • 최적해 탐색 도구로 널리 알려진 유전 알고리즘을 이용하여 신경망의 학습을 위한 가중치를 탐색하는 방법은 신경망의 학습 방법의 하나로 사용되고 있다. 신경망의 가중치는 일정 시간의 유전자 연산을 수행하게 되면 최적화된 가중치의 값과 유사하게 되는 특징을 지닌다. 이는 유전자 연산 방법에 의해 가중치가 수렴되고 있음을 의미하며, 그 때의 가중치는 일정한 패턴을 지니는 특징을 발견할 수 있다. 이에, 본 논문에서는 탐색된 가중치의 패턴을 보존하기 위한 방법으로 유전자의 일정 부분을 고정한 후 유전자 연산을 수행하는 개선된 학습 방법을 제안하고자 한다. 이를 이용할 경우에 유전자 탐색의 문제점으로 제시되고 있는 탐색 시간을 효율적으로 감소시킬 수 있는 장점이 있다.

  • PDF

Research on Features for Effective Cross-Lingual Transfer in Korean (효과적인 한국어 교차언어 전송을 위한 특성 연구)

  • Taejun Yun;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.119-124
    • /
    • 2023
  • 자원이 풍부한 언어를 사용하여 훈련된 모델을 만들고 해당 모델을 사용해 자원이 부족한 언어에 대해 전이 학습하는 방법인 교차언어 전송(Cross-Lingual Transfer)은 다국어 모델을 사용하여 특정한 언어에 맞는 모델을 만들 때 사용되는 일반적이고 효율적인 방법이다. 교차언어 전송의 성능은 서비스하는 언어와 전송 모델을 만들기 위한 훈련 데이터 언어에 따라 성능이 매우 다르므로 어떤 언어를 사용하여 학습할지 결정하는 단계는 효율적인 언어 서비스를 위해 매우 중요하다. 본 연구에서는 교차언어 전송을 위한 원천언어를 찾을 수 있는 특성이 무엇인지 회귀분석을 통해 탐구한다. 또한 교차언어전송에 용이한 원천 학습 언어를 찾는 기존의 방법론들 간의 비교를 통해 더 나은 방법을 도출해내고 한국어의 경우에 일반적으로 더 나은 원천 학습 언어를 찾을 수 있는 방법론을 도출한다.

  • PDF