• Title/Summary/Keyword: 효소 당화

Search Result 274, Processing Time 0.03 seconds

Effect of enzyme combinations on sugaryield from sunflower stalk pretreated by autohydrolysis (해바라기 줄기 열수전처리물의 효소당화에 미치는 효소조합의 효과)

  • Jung, Chanduck;Yu, Ju-Hyun;Hong, Kyung Sik;JeGal, Jonggeon;Song, Bong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.171-171
    • /
    • 2011
  • 리그노셀룰로오스 바이오매스를 원료로 하여 발효당을 생산하고자 할 때 최종적인 당수율은 적용하는 전처리 기술의 종류와 전처리 조건에 따라 크게 달라질 수 있다는 사실은 널리 알려져 있다. 또한 전처리물의 효소당화에서 셀룰로오스의 당전환율은 효소의 종류와 사용량에 의존적이므로 부족한 전처리 효과를 일부 보완하기도 한다. 본 연구에서는 바이오매스의 효소당화에 흔히 사용되고 있는 특정효소와 최근 공급되기 시작한 새로운 효소를 시료로 하여 해바라기 줄기의 열수전처리에 이은 효소당화에서 효소의 종류가 최종 당수율, 효소당화 시간 및 전처리효과에 미치는 영향을 측정하였다. 해바라기 줄기 분말을 $180^{\circ}C$에서 30분 동안 열수전처리하였을 때 헤미셀룰로오스의 수율이 최대가 되었으나 이 조건에서는 후속 효소당화에 의한 포도당 수율이 높지 않았다. Celluclast 1.5L 혹은 Celluclast conc BG는 전처리 물의 당화속도가 상대적으로 빠른 편이었고, 이 효소에 의한 당수율은 해바라기 줄기 셀룰로오스 함량의 80% 내외였으며, 바이오매스 1g당 효소첨가량이 3ml까지 증가함에 따라 당수율도 꾸준히 증가하는 경향을 보였다. 반면에 노보자임 스코리아로부터 분양받은 효소로서 NS22074와 NS50010의 혼합물은 Celluclast보다 약 10% 더 높은 당수율을 보여주었으나 당화는 상대적으로 느리게 진행되어 72시간 이상이 소요되었다. Endoxylanase 혹은 hemicellulase 등 다른 효소를 NS22074와 NS50010의 혼합물에 가하여도 당수율의 증대 효과는 미미하거나 거의 없었다. 시험에 사용한 효소제제에는 포도당, 소르비톨 등 여러 가지 당들이 보존제 혹은 안정화제로 함유되어 있는 것으로 나타나서 사용에 주의할 필요가 이었다.

  • PDF

Aspergillus kawachii S-27에 의한 Rice-Koji의 제조에 관한연구

  • 소명환
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.243.2-243
    • /
    • 1979
  • 현재 우리나라의 탁약주 용 Rice-Koji 제조 용종국균으로 널리 분양되고 있는 분양되고 있는 fawachi, S-27 균주가 생성하는 Amylase의 효소학적 특성과 Rice-Koji i제조 시 유기산 및 당화 효소의 생성 조건을 검토했다. 1. 본 균은 유기산 생성력이 강하고 또 생성하는 당화효소 및 액화효소는 내산성이 극히 강하며 pH3~5의 범위내에서 최고 활성을 나타내었으므로 탁약주 제조 용 종국균으로 아주 적합하였다. 2. 본 균의 발아 최적온도는 36$^{\circ}C$이었으며 Rice -Koji제조시 제국시간을 40시간으로 볼 때 유기산 생성의 최적온도는 32$^{\circ}C$이었고 당화효소 생성의 최적온도는 36$^{\circ}C$이었으며 고온인 4$0^{\circ}C$에서는 유기산 생성이 극히 불량하였다. 3. Rice-Kojiw제조시 당화효소의 생성은 배지의 수분함량 35%일 때 최고치를 보였으며 유기산 생성은 이 보다 높은 조건인 수분함량 40%일 때 이었고 비교적 건조한 조건인 수분함량 30%일 때는 유기산 생성이 특히 불량하였다. 4. 배지의 두께가 3cm이상이 되면 유기산 및 당화효소 생성에 않은 지장을 주었다. 5. 종국균의 점종량은 유기산 및 당화효소의 생성에 별로 영향을 미치지 못했다.

  • PDF

Substitution effects of enzymatically saccharified Korean rice wine lees powder on skim milk in yogurt fermentation (요구르트 발효에서 효소로 당화시킨 주박 분해물의 탈지분유 대체 효과)

  • In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.299-304
    • /
    • 2019
  • Yogurt was prepared with different substitution ratio [10, 20, 30, and 50% (w/w)] of skim milk with enzymatically saccharified Korean rice wine lees powder (eKRWLP) and fermented with commercially available mixed lactic acid bacteria (Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus) at $40^{\circ}C$ for 18 h. Fermentation characteristics were evaluated in terms of acid production (pH and titratable acidity) and viable cell counts of lactic acid bacteria. The pH of yogurts decreased with increasing eKRWLP substitution ratio of skim milk. After 12 h fermentation, titratable acidities of eKRWLP substitution and control (yogurt made without eKRWLP) were 0.84~1.04% and 0.93%, respectively. The titratable acidities of yogurts prepared with 10 and 20% substitution ratio increased than that of the control yogurt, but titratable acidities of yogurts of 30 and 50% substitution ratio decreased. After 9 h fermentation, the number of viable lactic acid bacterial cell were increased to 8.18~8.24 log CFU/g in all yogurts. In sensory evaluation, there were similar preference for eKRWLP yogurts prepared with 10 and 20% substitution ratio and the control. When eKRWLP substitution and control yogurts fermented for 9 h were incubated at $4^{\circ}C$, their pHs and titratable acidities were slightly changed but the number of viable lactic acid bacteria were well maintained above $10^7CFU/g$ for 11 days in yogurts prepared with 10 and 20% substitution ratio among eKRWLP substitution yogurts. These results suggest that eKRWLP can be used as substituent of skim milk and the optimum substitution ratio is around 10~20%.

Effect of Mixing Pattern of Different Types of Bioreactor on Enzymatic Hydrolysis of Cellulose (각종 섬유질 효소당화 반응조내의 현탁액의 혼합교반양상이 효소당화에 미치는 영향)

  • 박진서;박동찬이용현
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1989
  • Celluose is an insoluble substrate, therefore, a proper mixing of the cellulose suspension is essential for an effective enzymatic hydrolysis. To study the effect of mixing motion of various enzyme reactors on enzymatic hydrolysis of cellulose, three distinct types of biroreator: vertical impeller type bioreator(VITB), horizontal paddle type bioreactor(HPTB), and tumbling drum type bioreactor(TDTB), were assembled and their performance was compared. The optimal agitation speed was 100rpm for VITB and HPTB, 200rpm for TDTB. The saccharification efficiency of each reactor was compared under the optimal agitation intensity. The highest degree of saccharification was achieved in the case of VITB, especially, at high cellulose concentration. The VITB seems to be the most suitable type of bioreactor that can maintain proper mixing pattern for effective enzyme reaction. In the view of energy consumption, the TDTB showed the lowest value: however, the energy consumption was rapidly increased at high concentration of celluose. To dertermine the most suitable type of bioreactor, the entire process, including substrate cost, substrate concentration, and feasibility of scale-up, needs to be evaluated.

  • PDF

The Optimum Condition of SSF to Ethanol Production from Starch Biomass (전분질계 바이오매스의 동시당화발효 조건 최적화)

  • Na, Jong Bon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.858-862
    • /
    • 2008
  • The Simultaneous Saccharification and Fermentation(SSF) of ethanol production from potato starch studied with respect to growth pH, temperature, substrate concentration. The glucoamylase and Saccharomyceses cerevisiae have a capacity to carry out a single stage SSF process for ethanol production. The characteristics, termed as starch hydrolysis, accumulation of glucose, ethanol production and biomass formation, were affected with variation in pH, temperature and starch concentration. The maximum ethanol concentration of 12.9g/l was obtained using a starch concentration 30g/l, which represent an ethanol yield of 86%. The optimum conditions for the maximum ethanol yield were found to be a temperature of 38, pH of 4.0 and fermentation time of 18hr. Thus by using the control composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.

Evaluation of Operational Conditions and Power Consumption of a Bioattritor for Enzymatic Saccharification of Uncooked Starch (무증자 전분당화용 분쇄마찰매체 함유 효소반응기의 조작조건과 동력소모의 검토)

  • 이용현;박진서
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.349-357
    • /
    • 1989
  • Uncooked starch can be effectively saccharified in an enzyme reaction system containing attrition-milling media. To develope the high efficiency bioattritor, an agitated bead type bioreactor was constructed, and its effectiveness was evaluated. The optimal operation condition of bioattritor was found to be 300 g glass bead/L, 200 rpm, standard type impeller for 220 g/L of uncooked corn starch. The torque under the various operational conditions were also measured. The interrelation-ship between energy consumption for agitation of attrition-milling media and enhanced extent of saccharification of uncooked starch was evaluated, Power consumption was measured to be around 1.53 watt/L under the optimal operation condition. The attrition coupled enzyme reaction system is identified to tie a very excellent energy saying process for saccharification of uncooked starch, and seems to have a bright prospect of industrial application.

  • PDF

Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw (암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효)

  • Jang, Suh Yoon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • Physical and chemical barriers, caused by the close association of the main components of cellulosic biomass, hinder the hydrolysis of cellulose to fermentable sugars. Since the main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose, development of an effective pretreatment process has been considered to be important. In this study, SAA (Soaking in Aqueous Ammonia) was chosen as pretreatment because this is the simple and low-cost method. Rice straw of which the production is outstandingly high in domestic agriculture residues in Korea was chosen as raw material. SSA pretreatment with various reaction time of 3 h to 72 h was tested. The enzymatic hydrolysis and SSF (Simultaneous Saccharification and Fermentation) were performed at three different temperature (30, 40 and $50^{\circ}C$) to investigate performance of SSF upon various pretreatment conditions. As a result, this SAA treated-rice straw was found to have great potential for effective enzymatic hydrolysis and SSF with lower enzyme dosage at lower temperature ($30^{\circ}C$) than its conventional SSF. In SAA addition, SAA reduced fermentation time to 24 h owing to increase the initial hydrolysis rate substantially.

Enzymatic saccarification of cellulosic wastes by pectinase

  • Lee, Ji-Eun;Kim, Sam-Gon;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.512-516
    • /
    • 2003
  • The study was aimed to saccharify callulosic waste by pectinase produced from strain KL34 isolated from soil. The enzyme activity in the culture using 1%(w/v) fruit waste as carbon source reached to 3.8 U/ml. In the enzymatic hydrolysis of cellulosic waste, we obtained 9.5g/L reducing sugar in the condition of supernatant containing 5 U/ml enzyme and 10%(w/v) apple rind as substrate. Additionally, in enzymatic hydrolysis of food waste using pectinase from KL34, reducing sugar of 12.7g/L was obtained, indicating enhancement of 1.6 fold compared with that of only cellulase employment.

  • PDF

Enhancing mechanism of the saccharification of uncooked starch in an agitated bead reaction system (무증자전분의 분쇄마찰매체에 의한 효소당화촉진 Mechanism의 규명)

  • 조구형;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.407-413
    • /
    • 1986
  • In an agitated bead reaction system, the enzymatic saccharification of uncooked starch was substantially enhanced. The enhancement mechanism was investigated front the view of the structural aspect of starch. The mechanical impact caused by the movement of the attrition-milling media resulted neither the destruction of microcrystalline structure nor the fragmentation of starch granule. instead, the most distinct phenomenon was the swelling of starch granule up to about 2.5 times, and the swelling mechanism was not similar with that caused by cooking. However, in the case of the enzyme addition in the attrition coupled reaction system, the swollen starch was easily fragmented into the large number of small particles by the synergistic action of the enzyme and milling-media. The exposed surface area of the fragmented particles plays the major role in enhancing the saccharification. The saccharification rate was quite different depending on the source of starch, the reason was discussed in terms of the granular structure of uncooked starches.

  • PDF

Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass ; Horizontal Paddle Type Bioreactor for Enzymatic Hydrolysis of Cellulose (Biomass의 고효율 효소당화에 적합한 Attrition Coupled Bioreactor 개발에 관한 연구;Horizontal Paddle Type Bioreactor를 활용한 섬유소 당화)

  • 이용현;박진서
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.215-220
    • /
    • 1989
  • To develop an attrition coupled enzyme reactor with high efficiency-low energy consumption for saccharification of insoluble biomass, a 5L horizontal paddle type bioreactor was constructed and its performance was evaluated. The optimal condition for saccharification of 50g $\alpha$ -cellulose/L was found to be 200rpm with 500g of 3mm glass bead. Especially, the horizontal paddle type bloreactor was very effective for saccharification of high concentration of insoluble cellulose, in which around 72% of $\alpha$ -cellulose was saccharified for 75g $\alpha$ -cellulose/L, and even up to 70% for 100g of $\alpha$ -cellulose/L after 24hours. Under the optimal condition, the power consumption was measured to be around 1.7watth/g. Horizontal paddle type bioreactor seems to have an appropriated structural feature for industrial scale operation and to be an effective and energy saving attrition coupled enzyme reactor.

  • PDF