• Title/Summary/Keyword: 횡파속도

Search Result 38, Processing Time 0.021 seconds

Ultrasonic Nondestructive Evaluation of Creep-Induced Cavities (크리프 기공의 초음파 비파괴평가에 관한 연구)

  • Jang, Young-Su;Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.110-117
    • /
    • 1999
  • In order to ultrasonically evaluate creep cavities pure copper samples were subjected to creep test and their microstructures were examined. Ultrasonic velocities. frequency-dependent magnitude spectra and attenuations were measured on a series of copper samples obtained from the different stages of creep test. Velocities measured in three directions with respect to the loading axis decreased and their anisotropy increased as a function of the creep-induced porosity. The anisotropic behavior could be attributed to the progressive change of pore shape and preferred orientation as the creep advanced. The 2% porosity by volume decreased the longitudinal and shear wave velocities by 11% and 4%, respectively. Furthermore, both velocities decreased nonlinearly with the porosity. As the creep damage developed, the magnitude spectra lost high frequency components and their central frequencies shifted to lower values. The attenuation showed almost linear behavior in the frequency range used. Normalized velocity, central frequency shift and attenuation slope were selected as nondestructive evaluation parameters. These results were presented and showed good relations with the porosity content.

  • PDF

Seismic Anisotropy Physical Modeling with Vertical Transversely Isotropic Media (VTI 매질의 탄성파 이방성 축소모형실험)

  • Ha, Young-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Although conventional seismic data processing is based on the assumption that the media are isotropic, the subsurface is often anisotropy in shale formation or carbonate with cracks and fractures. This paper presents the anisotropic parameter and seismic modeling in transversely isotropic media with a vertical symmetry axis using seismic physical modeling. The experiment was successfully carried out with VTI media, laminated bakelite material, using contact transducer of p and s-wave transmission. The variation of velocities with angle of incidence was clearly shown in anisotropic material. Comparing these velocities with the calculated phase velocities, the (P) and (S)-wave velocity observed in anisotropic material was a very good agreement with the calculated values. Anisotropic parameter ${\varepsilon}$, ${\delta}$, ${\gamma}$ was estimated by using Lame's constant calculated from the observed velocity. For the purpose of testing (S)-wave polarization, a birefringence experiment was carried out. The higher velocity was associated with the polarization parallel to the fracture, and the lower velocity was associated with the polarization perpendicular to the fracture.

Two-dimensional shear-wave velocity structures of the Korea peninsula from large explosions (대규모 발파를 통한 한반도 지각의 2차원적 횡파 속도구조 연구)

  • Kim, Ki-Young;Hong, Myung-Ho;Lee, Jung-Mo;Moon, Woo-Il;Baag, Chang-Eob;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.75-79
    • /
    • 2007
  • To investigate the shear-wave velocity structures of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. First arrival times of shear wave were inverted to derive the velocity tomograms. Initial shear-wave 1-D models were built using the initial P-wave velocity models used by Kim et al. and $V_p/V_s$ ratios of the IASP91 model. The raypaths indicate existence of mid-crust interfaces at the depth of 2-3 km and 16 km. The deepest significant interface corresponding to the Moho discontinuity varies in depth from 32 km to 36 km. The refraction velocity along the interface varies from 4.4 km/s to 4.6 km/s. The velocity tomograms also indicate existence of a low-velocity zone at the depth of 7.8 km under the Okchon fold belt.

  • PDF

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method (수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도)

  • Jeon, Taehyeon;Kim, Ki Young;Woo, Namchul
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2013
  • Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.

Usefulness of Color-overlay Pattern of Breast Elastic Ultrasonography (유방 탄성초음파의 Color overlay pattern에 대한 유용성)

  • An, Hyun;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.401-406
    • /
    • 2017
  • Breast cancer rates are increasing every year, biopsy for diagnosing breast cancer is increasing as well. Biopsy also invasive test, have bad side effects from patients anxiety, infection, bleeding. In this study, Conduct a survey of 69 patients who brest lesion patient, both B-mode ultrasound and elastography exam and B-mode ultrasound was classified according to the BI-RADS category, and the elastography exam was classified according to the Color overlay pattern that the value of the kPa expressed in relation to the propagation velocity of Transverse waves. The optimal cut off value of the highest sensitivity and specificity was 54.70 kPa. In the color overlay pattern, Dark Blue 42 people, Light blue ~ Red 27 people classified results and BI-RADS classification results, benign 40 people and malignant 29 people classified results showed similar results. Therefore, It is judged that the color overlay pattern is positive when classified into Dark Blue, and malignant when classified into Light blue ~ Red. In conclusion, breast elastography is expected to play a innovative role in reducing the number of breast cancer examinations and classify between benign and malignant tumor.

Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea (익산 쥬라기 화강암의 정 및 동탄성학적 특성)

  • Kang, Dong-Hyo;Jung, Tae-Jong;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2000
  • The Iksan Jurassic Granite shows relatively less fractures and homogeneous rock fabrics, and is one of the most popular stone materials for architectures and sculptures. Almost mutually perpendicular rift, grain, and halfway in the Iksan Jurassic Granite are well known to quarrymen based on its splitting directions, and therefore it should exhibit orthorhombic symmetry. Theoretically, there are 9 independent elastic stiffness coefficients $(C_{1111},\;C_{2222},\;C_{3333},\;C_{2323},\;C_{1313},\;C_{1212},\;C_{1122},\;C_{2233},\;and\;C_{1133})$ for orthorhombic anisotropy. In order to characterize the static and dynamic elastic properties of the Iksan Jurassic Granite, triaxial strains under uniaxial compressive stresses and ultrasonic velocities of elastic waves in three different polarizations are measured. Both experiments are carried out with six directional core samples from massive rock body. Using the results of experiments and the densities measured independently, the static and dynamic elastic coefficients are computed by simple mathematical manipulation derived from the governing equations for general anisotropic media. The static elastic coefficients increase ar uniaxial compressive stress rises. Among those, the static elastic coefficients at uniaxial compressive stress of a 24.5 MPa appear to be similar to the dynamic elastic coefficients under ambient condition. Although some deviations are observed, the preferred orientations of microcracks appear to be parallel or subparallel to the rift, the grain, and the hardway from microscopic observation of thin sections. This indicates that the preferred orientations of microcracks cause the elastic anisotropy of the Iksan Jurassic Granite. The results are to be applied to the effective use of the Iksan Jurassic Granite as stone materials, and can be used for the non-destructive safety test.

  • PDF