• Title/Summary/Keyword: 횡방향철근

Search Result 157, Processing Time 0.023 seconds

Experiments and Analysis of Concrete Columns Confined with Lateral Reinforcements (횡구속된 콘크리트 기둥의 실험 및 해석)

  • 송하원;최동휴;변근주;김기수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.167-178
    • /
    • 1998
  • 횡방향철근에 의하여 적절히 구속된 콘크리트 기둥은 강도증가 및 연성의 확보면에서 유리하다. 본 연구의 목적은 횡방향철근에 의하여 구속된 코아콘크리트의 크기,횡방향철근의 간격비 및 체적철근비 등의 변화에 따른 콘크리트 기둥의 극한강도를 포함한 최대하중 이전의 거동 및 최대하중 이후의 거동을 실험적, 해석적으로 고찰함으로써 콘크리트 기둥의 구속효과정도를 규명하려는데 있다. 본 연구에서는 횡구속된 콘크리트 기둥모형의 압축재하실험을 수행하였으며, 최대하중 이전의 거동에 대하여 연속체적 파괴와 소성을 고려한 3차원 모델링을 통한유한요소해석을 실시하였다. 또한 횡구속된 콘크리트 기둥의 변형률국소화 모델에 의한 파괴해석을 통하여 구속된 콘크리트 기둥의 최대하중 이후의 거동을 재현하였다. 해석결과는 압축재하실험의 결과와 비교, 분석되었으며, 이에 따른 구속효과를 규명하였다.

Characteristics of the Stress-strain Relationship of Square Sectional Concrete Confined by Hoop Reinforcement with Cross-ties (후프띠철근과 보강띠철근으로 횡구속된 정사각단면 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Cha, Soo-Won;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.39-48
    • /
    • 2010
  • Improved seismic performances of RC bridges can be attained by sufficient ductilities of piers, which can be obtained by providing sufficient lateral confinements to the plastic hinge regions of piers. The cross sectional shape and the amount of lateral reinforcements are key parameters in the determination of effective confinements. Even though identical amounts of lateral reinforcement are provided, the effective confinement differs due to different spacing, arrangements, hook details and so on. Unlike circular sections in which confinement is exerted by mere hoop reinforcements, cross-ties are arranged in square or rectangular sections to enhance the effective confinements. The stress-strain relationship of confined concrete is varied by how to consider these cross-ties. In this study, the stress-strain relationships of confined concrete with cross-ties are investigated experimentally and their mechanical characteristics are estimated by comparison with other empirical equations.

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel (중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가)

  • Kim, Tae-Hoon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2012
  • The purpose of this study was to investigate the seismic behavior of hollow circular reinforced concrete bridge columns with confinement steel, and to develop improved seismic design criteria. Three hollow circular columns were tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The numerical method used gives a realistic prediction of the seismic performance throughout the loading cycles for the several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve current practice in the design and construction of hollow circular reinforced concrete bridge columns.

Effect of High Temperature on Mechanical Properties of Confined Concrete with Lateral Reinforcement (고온을 받은 횡방향 철근 구속 콘크리트의 역학적 특성 연구)

  • Choi, Kwang Ho;Lee, Joong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • The lateral reinforcements of concrete such as hoops and spiral bars are known to confine concrete to compensate the strength loss due to fire by reducing explosive spalling and improving the capacity of ductility. In this context, a study was conducted to investigate the residual mechanical properties of confined and unconfined concrete($f_{ck}$=60MPa) after a single thermal cycle at 300, 600, $800^{\circ}C$. The main parameters required to establish the stress-strain relationship are the peak stress, the elastic modulus, and the strain at peak stress. The knowledge of the residual mechanical properties of concrete is necessary whenever the thermally damaged structure is required to bear a significant share of the loads, even after a severe thermal accident. Based on the results obtained in this study, the residual stress of confined concrete under thermal damage is higher according to the level of confinement and the larger strain made it to have better ductility. The decreasing ratio of elastic modulus from the relationship of stress and strain was also smaller than that of unconfined concrete.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: I. Experiments and Analyses (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : I. 실험 및 해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Kang, Hyeong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.339-349
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of circular reinforced concrete bridge piers with confinement steel and to provide the data for developing improved seismic design criteria. Fourteen circular reinforced concrete bridge piers were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. In the companion paper, the proposed numerical method for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel is verified by comparison with experimental results.

Ductility Improvement of Square RC Columns by Using Continuous Spiral Stirrup (연속 횡방향철근 개발을 통한 사각기둥의 연성화)

  • Cho, Kyung Hun;Lee, Tae Hee;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.149-156
    • /
    • 2023
  • Recently, concerns about natural disasters such as earthquakes, tsunamis and typhoons have increased. As the magnitude and frequency of earthquakes increase, research is needed to prevent structures from collapsing due to earthquake loads. Research is needed to increase the ductility of columns to prevent the collapse of structures. In this study, the ductility improvement of square columns achieved by applying spiral stirrups to square columns. Square columns reinforced with spiral stirrups are more resistant to repetitive loads such as seismic loads than columns reinforced with tie stirrups. Also, the spiral stirrups can apply better confinement to the concrete. In this study, an uniaxial compression test was conducted to evaluate the performance of columns reinforced with spiral stirrups. The results showed that the columns reinforced with spiral stirrups in both the circular and square columns showed higher compressive strength than the columns reinforced with the tie stirrups. In addition, the columns reinforced with spiral stirrups for both the square and circle columns, showed a tendency to endure the load even after the initial cracking and rebar yielding.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Inelastic Analysis of Reinforced Concrete Structure Subjected to Cyclic Loads with Confining Effects of Lateral Tie (횡방향 철근의 구속효과를 고려한 반복하중을 받는 철근콘크리트 부재의 비탄성해석)

  • 유영화;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-93
    • /
    • 1998
  • The eigenvalue problem is presented for the building with added viscoelastic dampers by using component mode method. The Lagrange multiplier formulation is used to derive the eigenvalue problem which is expressed with the natural frequencies of the building, the mode components at which the dampers are added, and the viscoelastic property of the damper. The derived eigenvalue problem has a nonstandard form for determining the eigenvalues. Therefore, the problem is examined by the graphical depiction to give new insight into the eigenvalues for the building with added viscoelastic dampers. Using the present approach the exact eigenvalues can be found and also upper and lower bounds of the eigenvalues can be obtained.

  • PDF

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.