• Title/Summary/Keyword: 회피설계

Search Result 314, Processing Time 0.03 seconds

Get It Closer: Effect of the Approach-Avoidance Experience on Attitude through a Touchscreen Device (터치스크린을 통한 접근-회피 경험이 태도에 미치는 영향)

  • Jung, Yujin;Kang, Hyunmin;Yun, Munseon;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.22 no.2
    • /
    • pp.17-28
    • /
    • 2019
  • The touchscreen device is now commonly found in the form of mobile phones, tablet PCs, and other devices. Varied physical and visual experiences can be experienced through touchscreens. This study intended to explore how the physical and visual experiences provided by the touchscreen would affect people through their existing associations of behavior-attitude. Previous studies have found that certain behaviors affect attitudes. In particular, the approach-avoidance behavior has been noted to influence both social and personal attitudes. It was thus deemed necessary to ascertain the approach-avoidance effect exerted by touchscreens on the attitudes of users as the technology is widely used today. Experiment 1 provided an approach-avoidance experience via a touchscreen and demonstrated that touchscreen-based approach-avoidance dragging behavior on the touchscreen can affect a user's preference and purchase intent. It was found that a product that had been approached showed both higher preference and higher purchase intent than a product that had been avoided. Experiment 2 investigated whether a similar effect would occur when only the visual experience of approach-avoidance was provided. The outcome proved that products that had been visually approached had higher scores than products that had been avoided, both in terms of preference and purchase intent. The movement of the arm on the touchscreen (Experiment 1) and the visual perception of the approach-avoidance experience (Experiment 2) were both shown to influence participants' attitudes toward products. The results of this study suggest that the behavior and perception of users may be an important factor in designing touchscreen interfaces for online shopping.

Design of Simple-structured Fuzzy Logic System based Driving Controller for Mobile Robot (단순구조 퍼지논리시스템을 이용한 이동 로봇의 주행 제어기 설계)

  • Choi, Byung-Jae;Jin, Sheng
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, we present an obstacle avoidance control algorithm for mobile robots based on SFLC (single-input fuzzy logic controller) with an efficient fuzzy logic look-up table to replace the traditional complicated operation. This method achieves better performance than traditional methods in terms of efficiency. The output of a SFLC leads the robot to the target automatically although many obstacles on the path. Our experiments show that the robot has good performance in the view of path tracking and other efficiency.

A Method of Collision Avoidance for Autonomous Mobile Robot using the antenna, IR and ultrasonic (로봇의 자율 주행을 위한 더듬이, IR 및 초음파 센서를 이용한 충돌 회피 방법)

  • Shin, Seung-A;No, In-Ho;Hwang, Taehyun;Shin, Seok Hoon;Shim, Joobo;Oh, Mi Sun;Ko, Jooyoung;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1236-1246
    • /
    • 2012
  • Autonomous mobile robot has ability to move itself so it can access to danger area or narrow place, and send acquired data by sensors at the same time. In order to drive to directed place, it should progress to the destination without any collision to other robot. In this study, we built and realized the collision avoidance system for autonomous mobile robot. By using antenna, IR and ultrasonic Sensors for collision avoidance, we made it possible to sense the attached and long-distance obstacle, and can avoid. Also, we used wired and wireless network to send the data after the mission.

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok;Sur, Joo-No
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.

A Study on the Structural Reinforcement for the Reduction of Transverse Vibration by Ship's Main Engine (선박 주기관에 의한 횡진동 저감을 위한 구조보강 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun;Im, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.279-285
    • /
    • 2019
  • Transverse vibrations of a ship's aft end and deckhouse are mainly induced by transverse exciting forces from the main engine. Resonance should be avoided in the initial design stages when there is a prediction of resonance between the main engine and transverse modes of the deckhouse. Estimates of frequencies for resonance avoidance are possible from the specifications of the main engine and propeller, but the inherent vibration frequency of the structure around the engine room is not easy to estimate due to the variation in the shape. Experience-oriented vibration design is also carried out, which results in many problems, such as process delay, over-injection of on-site personnel, and iterative performance of the design. For the flexible design of 8,600 TEU container vessels, this study addressed the resonance problem caused by the transverse vibration of the main engine when only the main engine was changed from 12 cylinders to 10 cylinders without modification of the hull structure layout. Efficient structural reinforcement design guidelines are presented for avoiding resonances with the main engine lateral vibration and the structure around the engine room. The guidelines are expected to be used as practical design guidelines at design sites.

The Design of Evading Collision System of Unman Vehicle (무인 이동체의 충돌 회피 시스템 설계)

  • Kim, Tae-Hyoung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.254-255
    • /
    • 2016
  • The Human have sought convenience through advancing Science skill, The Generation that unman control all machine have came. the unman - vehicle have used and applied flight, ship, car, manufacturing all over the world. plus which, that is researching. but pros and cons of unman - vehicle is that unman control machine, It mean that unman - vehicle have high possibility which have collision with obstacle on driving. I will show you that this evading collision will be made from fuzzy control and video recognition and sensor recognition.I look for good effect for this system.

  • PDF

A Study on the Obstacle Avoidance Control of Pipe Climbing Robot for Pipe Structure Inspection (파이프 구조물 검사를 위한 파이프 등반 로봇의 장애물 회피 제어 연구)

  • Lee, S-Ra-El;Lee, Sung-Uk;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.167-173
    • /
    • 2020
  • A lot of research has been done on pipe climbing robots to investigate the aging pipe structures of nuclear power plants and petrochemical plants. Nevertheless, most of the research on pipe climbing robots focused on the structural design and foundational motion control of pipe climbing robots. So, For the operator to control the pipe climbing robot, it has many difficulties to climb the pipe and avoid obstacles by manual operation. In this paper, propose an algorithm that recognizes obstacle by using camera images of pipe climbing robots, estimates the distance between pipe climbing robots and obstacles, and determines the position where pipe climbing robots can catch pipes to avoid obstacles between pipes.