• Title/Summary/Keyword: 회전 접합부

Search Result 159, Processing Time 0.02 seconds

The Effect of the Variation of the Number of Bolts on the Rotational Stiffnesses of Double Angle Connections (볼트수의 변화가 더블앵글 접합부의 회전강성에 미치는 영향)

  • Yang, Jae-Geun;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.69-75
    • /
    • 2004
  • In the construction of row-rise steel buildings, double angle connection can be considered as one of most effective connection types. Its connection flexibility depends mainly on several parameters such as angle thickness, bolt gage distance, and number of bolts. To establish the effect of the variation of the number of bolts on the moment-rotation relationship, three experimental tests have been conducted in this research. Based on the results of each experimental test, the rotational stiffness of each angle specimen can be calculated by performing regression analysis. Considering the results of regression analysis, we concluded that the more the number of bolts used in double angle connection, the higher the rotational stiffness as one can expected.

  • PDF

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.657-664
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of the new uniplanar T-joints in cold-formed square hollow sections. In the configuration of the new T-joint, only a branch member is orientated to a chord member at 45 degrees in the plane of the truss. This study focused on the branch-rotated T-joints that were governed by chord flange failure in previous studies. Test results of the T-joint in cold-formed square hollow sections revealed a deformation limit of 3%B for $16.7{\leq}2{\gamma}(=B/T){\leq}33.3$ and $0.27{\leq}{\beta}(=b1/B){\leq}0.6$. The existing strength formulae for traditional T-joint were determined and a new yield-line model for the branch-rotated T-joint proposed. Finally, the strength formula on the yield-line analysis was compared with test results and the application range of the proposed formula recommended.

An Experimental Study on the Behavior of Connections of Thin-Walled Cold-Formed Steel Section Frames (박판 냉간성형형강 골조의 접합부 거동에 관한 실험적 연구)

  • Kwon, Young Bong;Cho, Jong Su;Song, Jun Yeup;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • A series of connection tests of portal frames which were composed of cold-formed steel studs and rafters was carried out to study the moment-rotation relation, the rotational rigidity, and the yield and the ultimate moment of the connections. The main factors of the tests were the thickness, the shape of the connecting members which were made of mild steel, and the torsional restraints of the test specimens. The test results were compared with those obtained through the non-linear analysis, for verification. The secant stiffness estimated from the experimental moment-rotation curve was proposed for the rotational rigidity of semi-rigid connections, and its validity was verified in the structural frame analysis.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection (상·하부 스플릿 T 접합부의 초기회전강성 예측모델)

  • Yang, Jae-Guen;Kim, Yun;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2012
  • A double split tee connection is used as a connection that is suitable for ordinary moment frames or special moment frames according to the combination of variables of the thickness of the T-stub flange and the gauge distance of the high-strength bolts. In order to demonstrate safe structural behavior, a double split tee connection must meet the requirements for inter-story drift angles and the moment of connection, as defined in the Korea Building Code-Structural. In order to determine whether the these requirements are met, it is necessary to predict rotational stiffness and the ultimate plastic moment of the connection. Therefore, this study primarily aimed to propose an analytical model for predicting the rotational stiffness of a double split tee connection under a static load. Toward this end, a three-dimensional, non-linear finite element analysis was carried out. Then, the applicability of the proposed model was verified after comparing the test results of this study with other studies.

An Analytical Model for Calculating Initial Stiffnesses of Double Angle Connections (더블앵글 접합부의 초기강성 산정을 위한 해석모델)

  • Yang, Jae-Guen;Kim, Ki-Hwan;Kim, Ho-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.55-63
    • /
    • 2004
  • Double angle connections are commonly used for the construction of the low-rise steel framed buildings. Several experimental tests lave been conducted to investigate the effect of the number of bolts on the rotational stiffness of a double angle connection. Several parameters are obtained by performing regression analysis. An analytical model has been introduced to calculate the initial stiffness of a double angle connection in this research.

  • PDF