• Title/Summary/Keyword: 회전 우주

Search Result 441, Processing Time 0.023 seconds

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

An Improved Tracking Parameter File Generation Method using Azimuth Fixing Method (방위각 고정 기법을 이용한 개선된 Tracking Parameter File 생성 방법)

  • Jeon, Moon-Jin;Kim, Eunghyun;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • A LEO satellite transmits recorded images to a ground station using an X-band antenna during contact. The X-band antenna points to the ground station according to a TPF (tracking parameter file) during communication time. A TPF generation software generates azimuth and elevation profile which make the antenna point to the ground station using satellite orbit and attitude information and mission information including recording and downlink operation. When the satellite passes above the ground station, azimuth velocity increases rapidly so that jitter may occur if the azimuth velocity is in specific range. In case of realtime mission in which the satellite perform recording and downlink simultaneously, azimuth velocity must be lower than specific value to prevent image blur due to jitter effect. The method to point one virtual ground station has limitation of azimuth velocity reduction. In this paper, we propose the azimuth fixing method to reduce azimuth velocity of X-band antenna. The experimental results show that azimuth velocity of the X-band antenna is remarkably reduced using proposed method.

The Axial-displaced gregorian antenna design using Ray-tracing Method (Ray-tracing 기법을 이용한 축변위 그레고리안 안테나 설계)

  • Kim, Chun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.515-521
    • /
    • 2014
  • In this paper, we designed axis-displaced Gregorian antenna by using Ray-tracing method. This antenna improves gain, VSWR by rotating the axis of the sub-reflector to get rid of E-field wave returned from sub-reflector to feed horn. Therefore it reduce the sub-reflector size and the volume of antenna. This method is used to track the propagation path for radiation pattern of feed horn from feed horn to sub-reflector, main-reflector and air. We get E-field distribution of this antenna aperture and calculate antenna radiation pattern and optimize the antenna performance. The Ray-tracing Method was verified because the gain, radiation patterns, side lobe level, beam width and return loss of the designed antenna are very similar to CST simulation result and a measured result of the fabricated antenna.

An Application of Radio-Controlled Model Testing Techniques to Validation of Air-Vehicle Design Configuration (비행체 설계 형상 타당성 확인을 위한 무선조종 모형시험 기법 적용)

  • Chung, In-Jae;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • an approach to air-vehicle design, an application of the radio-controlled model flight test techniques has been presented. The approach presented in this study is to validate the air-vehicle design configuration by analyzing the flight test results of scale model with dynamic similarities, and then to apply the analyzed results to the aerodynamic design process in early stage of the air-vehicle development. To develop practically applicable similarity laws for the subscale flying model design, the air-vehicle motions are decoupled into rotational motions for stability & control similarities and translational motions for flight performance similarities. Also, detail techniques for radio-controlled model flight test have been developed. Based on the results obtained from the radio-controlled flight test, the present approach for air-vehicle design has shown to be useful to validate the air-vehicle design configuration.

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

Wind Tunnel Test for the Propeller Performance of the High Altitude UAV (고고도 무인기용 프로펠러 성능특성 풍동시험)

  • Cho, Teahwan;Kim, Yangwon;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • Propeller performance measurement system for high altitude UAV was designed and applied to the wind tunnel test for 2 propeller models with a diameter around 1 m. Mechanical power of the propeller was directly measured by using the torque sensor installed on the rotating axis. The thrust of whole operation body including the propeller was measured by thrust road cell. The guide rail system was suggested to reduce the weight influence of operation body on the thrust road cell. The influence of each measured variables on the aerodynamic coefficients was studied with the repeatability and uncertainty analysis. This analysis result shows that the accuracies of the road cell and the wind velocity were major factors for the thrust coefficient. Propeller performance with typical RPM was measured with various wind speeds and the test results was summarized by performance coefficients for 5 different RPM.

Analysis and Flight Test Verification of T/A-50 Engine Horsepower Extraction Capability (T/A-50 엔진 축마력(Horsepower) 능력 해석 및 비행시험 검증)

  • 이상효;이부일;정주현;이상백
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.105-111
    • /
    • 2006
  • The aircraft engine is to generate thrust for the maneuver of aircraft and to provide the power to the related hydraulic system and electrical system. Since the power provided to the systems is extracted from the high pressure compressor of aircraft engine, the extracted power is called horsepower extraction (HPX). If the HPX provided from the engine is smaller than the HPX required from the related systems, there could be abnormal engine behavior, like engine rollback or stall. Analysis on comparing the required HPX and the engine HPX capability had been performed during the T/A-50 FSD (Full Scale Development) period. The analysis results make the engine schedule changed, and T/A-50 flight test has been performed with the changed engine schedule. The analysis results and changing the engine control schedule were verified to be valid with the flight test results.

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.