• Title/Summary/Keyword: 회전유동계수

Search Result 73, Processing Time 0.016 seconds

Efficient Analysis of the Aerodynamic Characteristics of Rotor Blade Using a Reduced Order Model Based on Proper Orthogonal Decomposition Method (적합직교분해를 이용한 로터 블레이드의 차수축소모델 구축 및 공력특성 분석)

  • Jung, Sung-Ki;Duc, NgoCong;Yang, Young-Rok;Cho, Tae-Hwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1073-1079
    • /
    • 2009
  • The proper orthogonal decomposition (POD) method can identify principal modes that optimally capture the energy content from large multi-dimensional data set. In this study unsteady pressure fields on the rotor blade surface of a helicopter in forward flight are expressed by a reduced order model based on the POD method. Special modes containing high energy are analyzed to investigate the aerodynamic characteristics in more efficient way. The CFD simulation of flowfields around helicopter rotor blade in hovering motion is also conducted to validate its prediction with experimental result. In the process 7 modes containing energy ratio 99% from 240 snapshots information are identified and utilized to construct a reduced order model.

Effect of Various Mixing Ratio of Non-glutinous and Glutinous Rice on Physical and Rheological Properties of Extrudate (멥쌀과 찹쌀의 혼합비율별 압출성형물의 물리적 성질 및 유동특성)

  • Kum, Jun-Seok;Kwon, Sang-Oh;Lee, Hyun-Yu;Lee, Sang-Hyo;Jung, Jin-Hyub;Kim, Jun-Pyong
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.442-447
    • /
    • 1994
  • Effect of different mixing ratio of non-glutinous and glutinous rice on physical and rheological properties of extrudate prepared in a single screw extruder were examined. The extrusion conditions in term of screw speeds, moisture content and die temperature were 258 rpm, 18% and $120^{\circ}C$, respectively. The resisdence time distribution of the most of materials were within 30 second and small portion of them went up to 80 second. The expansion ratio was the highest value (2.93) for 70% of glutinous rice in the mixture, while the lowest value for 100% of non-glutinous rice. Breaking strength was in the range between 1,051g and 1,117g for $10{\sim}20%$ of glutinous rice in the mixture, while the lowest value (737g) for 80%r of glutinous rice. As the amount of glutinous rice increased, L and a values were increased and b value was decreased. The uncooked cold paste viscosity had 400 B.U. for 100% non-glutinous rice , while no peak for the 100% glutinous rice. As the amount of glutinous rice increased up to 100%, the water absorption index (WAI) was decreased, while water solubility index (WSI) was increased. The rheological properties of extrudate were accounted by the law of Oswald. The flow behavior index of extrudate was less than 1.0, which showed pseudoplastic behavior. Yield stress was the highest value for 20% of glutinous rice in the mixture and the lowest value for $80{\sim}100%$ of glutinous; rice. Number of air cell was between 128 and 159 for $80{\sim}100%$ of glutinous rice in the mixture, while $81{\sim}84%$ for $0{\sim}20%$ of glutinous rice. The degree of shapefact was increased more when the mixtures of glutinous and non-glutinous rice was used than when glutinous or non-glutinous rice was only used.

  • PDF

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.