• Title/Summary/Keyword: 회전류

Search Result 361, Processing Time 0.034 seconds

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 2004
  • Performance predictions of the propulsion system were conducted for a 900㎏ class Canard Rotor/Wing vehicle. The main components of the propulsion system are turbojet engine, exhaust ducts and nozzles. The internal flow of the duct was considered as one-dimensional, compressible and viscous flow. Adequate governing equations including centrifugal force effect were applied to the analysis of the duct flows. Results such as available power, available thrust, engine throttle, mass flow rates, rotor RPM and cruise nozzle area were presented for rotary-wing mode and transition mode.

  • PDF

Rotation-Invariant Fingerprint Identification System for Security Verification (안전 검증을 위한 회전 불변 지문인식 시스템)

  • Lee, S.H.;Ryu, D.H.;Park, M.S.;Ryu, C.S.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.192-199
    • /
    • 1999
  • We propose a rotation invariant fingerprint identification system based on the circular harmonic filter(CHF) and binary phase extraction joint transform correlator(BPEJTC) for validation and security verification. It is shown that this system has the shift and rotation robust properties and can recognize the fingerprint in real-time. The complex circular harmonic filter, which is used to obtain the rotation invariance, is converted into the real-valued filter for real-time implementation. Experimental results show that this system has a good performance in the rotated fingerprints.

  • PDF

특집:에너지플랜트 및 핵심기자재 기술 - 플랜트용 펌프/압축기 기술

  • Yu, Il-Su
    • 기계와재료
    • /
    • v.24 no.1
    • /
    • pp.48-62
    • /
    • 2012
  • 플랜트 기자재 산업은 전력 석유 가스 담수 등 제품 생산 설비 및 공장 건설에 소요되는 기자재류 제조업을 일컫는다. 국내 플랜트 산업은 세계 7위 수준인 반면, 외화가득률은 30% 이하에 머물러 있다. 국산 조달률이 가장 저조한 기자재는 기계 기자재류이며, 특히 펌프, 압축기 등과 같은 회전장치류 대부분이 수입에 의존하고 있다. 따라서 국내 플랜트 기자재 산업의 장기적 기술경쟁력 확보를 위해서는 국산화율은 저조하지만 고부가가치 품목인 펌프, 압축기에 대한 기술개발, 외국기업과 기술제휴 및 M&A 등을 통해 기술력을 빠르게 확보하는 것이 필요하다.

  • PDF

Application and Evaluation of Signal Metering at Special Roundabouts (특수유형 회전교차로 신호미터링 적용 및 평가)

  • Yang, Taeyang;Lee, YoungIhn;Yoon, Taekwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.96-109
    • /
    • 2019
  • Roundabouts are actively installed to reduce unnecessary congestion and reduce traffic accidents. However, it is difficult to apply more than 450 cars per, hour. In addition, there is a downside to the concentration of delays in certain directions depending on traffic conditions. To compensate for these shortcomings, signal metering was introduced. Signal metering is a technique that gives red signals to adjacent left traffic flow in the event of a delay in a particular direction. The purpose of this study is comparing the effect of signal metering in conventional and special types (turbo roundabout, flower roundabout) of roundabout. VISSIM API is used for analysis. The analysis result show that only conventional roundabout signal metering algorithm reduce delay time per vehicle. As the result of the turbo roundabout and flower roundabout signal metering algorithm increase delay time per vehicle, signal metering algorithm can be applied in conventional roundabout.

The Rotated Hexagonal Lattice Model for Pedestrian Flow (보행교통류를 위한 회전육각격자모형 개발)

  • Lee, Jun;Heo, Min-Guk;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, the rotated hexagonal lattice model (RHLM) was proposed, which is applied to pedestrian flow, and developed the simulation model for the pedestrian counterflow. RHLM is an upgrade version of the square lattice model(SLM) and hexagonal lattice model(HLM). The simulation was performed at the hexagonal lattice $20{\times}20$ and evaluated by different speed, density and flow conditions. Simulation results are compared with SLM and show that RHLM can replicate the characteristics of pedestrian traffic more effectively and reliably than any other existing models from several perspectives. First, RHLM can explain the shortest-path movement of pedestrians and more realistic avoidance motion. If they cannot move straight direction, they can move shorter distance from previous position to destination. Second, RHLM reflects the characteristics that the pedestrian can move with higher capacity and the speed of pedestrian flow is hard to zero.

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

Experimental Study of Secondary Flow Using Real-scale Experiment Channel (실규모 실험수로를 이용한 이차류 특성에 대한 실험적 연구)

  • LEE, Du Han;SON, Minwoo;KIM, Young Do;KIM, Jung Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.13-25
    • /
    • 2012
  • This study aims to experimentally investigate the characteristics of secondary flows in a natural channel. For this objective, various conditions of water discharge and depth are tested in a real-scale experimental channel which has 1.2 of meandering. From results of experiments, it is observed that the maximum flow velocity exists in the outer zone of ben. This result is different from the previous studies conducted with laboratory experiments. The bank of 1:2 slope replicating the condition of natural channel is considered to cause this result. The location of the maximum flow velocity moves to the center of channel as the channel changes to be straight. It is also known from this study that two vorteces coexist on the left and right banks of bend.

Theory and Experiment for Electromagnetic Shaft Current in Rotation Machinery (회전기계의 전자기 축전류에 대한 이론 및 실험)

  • Kim, Chae-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.40-45
    • /
    • 1999
  • Electrical damages to critical parts in rotation machinery have caused may machinery failures and hours of costly downtime. The problem of shaft currents generated in non-electrical machines have puzzled both users and manufacturers of these machines. The main solution for preventing electro- magnetic type damage is to demagnetize all of the machinery parts, however this is costly and time consuming. Therefore a thorough investigation into the causes and physical characteristics of electro- magnetic shaft currents is needed. In this paper, the self excitation theory was developed for a simple model, and axial flux Faraday disk machine surrounded by a long solenoid. Experimental tests were conducted to investigate the physical characteristics on an electromagnetic self excitation rig. The theory showed that the directions of both the shaft rotation and the coil turns should e identical if self excitation is to occur. From the tests, the electromagnetic type shaft current had both AC and DC components occurred at all vibration frequencies. This could point to the way to detect small instabilities or natural frequency locations by monitoring shaft currents.

  • PDF