• Title/Summary/Keyword: 회전동역학

Search Result 125, Processing Time 0.031 seconds

An Improved Dynamics Model for Stone Skipping Simulation (물수제비 시뮬레이션을 위한 개선된 동역학 모델)

  • Lee, Nam-Kyung;Baek, Nak-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1382-1390
    • /
    • 2010
  • We can see interactions between rigid body and fluid every day, anywhere. This kind of rigid body-fluid simulation is one of the most difficult problems in physically-based modeling, mainly due to heavy computations. In this paper, we present a real-time dynamics model for simulating stone skipping, which is a popular rigid body-fluid interaction in the real world. In comparison to the previous works, our improved dynamics model supports the rotation of the stones and also computes frictional forces with respect to the air. We can simulate a realistic result for various user input by using proposed model. Additionally, we present a water surface model to show more realistic ripples interactively. Our methods can be easily adapted to other interactive dynamics systems including 3D game engines.

Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method (병렬 처리를 이용한 부분 시스템 기반 유연다물체 동역학의 효율적인 해석 연구)

  • Han, Jong-Boo;Song, Hajun;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.507-515
    • /
    • 2017
  • Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

Simplified Model of Wheel Type Dog-Horse Robot to Reduce Dynamic Analysis Time (차륜형 견마 로봇의 동역학 해석시간 단축을 위한 단순화 모델)

  • Kim, Young Jin;Jung, Samuel;Kim, Tae Yun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • In wartime conditionsmilitary combat vehicles are required to be driven on rough roads that have significant obstacles. A wheel type dog-horse robot with a rotary suspension system was applied to overcome the obstacles. To achieve real-time analysis, a simplified model was proposed by using velocity transformations. Through comparison with the multi-body dynamics model, the efficiency and accuracy of the proposed modeling was proven.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

Bearing Performance Evaluation Based on Rigid Body Dynamic Analysis Considering Rotation and Loads Over Time (시간에 따른 회전 및 하중을 고려한 강체 동역학 해석에 기반한 베어링 성능 평가)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2023
  • Bearing is a mechanical component that supports loads and transmits rotation. As the application of high-value-added products such as semiconductors, aviation, and robots have recently become diverse and more precise, an accurate bearing performance prediction and evaluation technology is required. Bearing performance evaluation can be divided into evaluations based on bearing theory and on numerical analysis. An evaluation based on numerical analysis is a technique that has been highlighted because the problems that remained unsolved owing to time problems can be solved through recent developments in computers. However, current studies have the disadvantage of not considering the essential changes over time and bearing rotation. In this study, bearing performance evaluation based on rigid body dynamic analysis considering rotation and load over time is performed. Rigid body dynamic analysis is performed for deep groove ball bearing to calculate the load applied by the ball. The reliability of the analysis is verified by comparing it with the results calculated using bearing theory. In addition, rigid body dynamic analysis is performed for automotive wheel bearings to calculate the contact angle and load applied by the ball for cases where axial load and radial load are applied, respectively. The effect of rotation and load over time is evaluated from these results.

Analysis of Dynamic Equilibrium Configuration of Speed Governor (조속기의 동적 평형위치 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4733-4738
    • /
    • 2013
  • This paper proposes a method to obtain the dynamic equilibrium configuration of a constrained mechanical system by using multibody dynamic analysis. Dynamic equilibrium equations with independent coordinates are derived from the time-dependent constraint equations and dynamic equations of a multibody system. The Newton-Raphson method is used to find numerical solutions for nonlinear algebraic equations that are composed of the dynamic equilibrium and constraint equations. The proposed method is applied to obtain the dynamic equilibrium configuration of a speed governor, and the results are verified on the basis of the results from conventional dynamic analysis. Furthermore, vertical displacements at equilibrium configuration, which varied with the rotational velocity of the speed governor, are calculated, and design parameter analysis of the equilibrium configuration is presented.

A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility (베어링 하우징의 구조 유연성에 따른 터보펌프 회전체동역학 특성 연구)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • A rotordynamic analysis is performed for a turbopump of 7 ton class liquid rocket engine considering bearing housing structural flexibility. Stiffness and damping characteristics of ball bearings and pump noncontact seals are reflected in a rotordynamic model. A dynamic model of bearing housing with lumped mass and stiffness is also applied to the rotordynamic analysis. Rotor critical speed and onset speed of instability are predicted from synchronous rotor mass unbalance response and complex eigenvalue analyses. The bearing housing structural flexibility effect on rotordynamic characteristics is investigated for both of bearing loaded and unloaded conditions respectively. From the numerical analysis, it is found that the effect of the housing structural flexibility significantly reduces the rotor critical speed and onset speed of instability.

Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism (볼 베어링의 접촉 메커니즘을 고려한 회전체 시스템의 동적 해석)

  • Kim, YoungJin;Lee, Jongmahn;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1535-1540
    • /
    • 2013
  • We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine.